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Abstract

We study markup cyclicality in a granular macroeconomic model with oligopolistic compe-

tition. We first characterize how firm, sectoral, and aggregate markups comove with out-

put at different levels of aggregation in response to firm-level shocks. We then quantify the

model’s ability to reproduce salient features of the cyclical properties of measured markups

in French administrative firm-level data from the bottom (firm) level to the aggregate level.

We document that (i) firm-level markups rise with market share and sector-level markups

with concentration, (ii) the relationship between markups and sectoral output varies by firm

size—negative for small firms but positive for large ones, (iii) sector-level markups move

positively with sectoral output, and (iv) sectoral markups show no systematic relationship

with aggregate output. Our model helps rationalize these seemingly conflicting patterns of

markup cyclicality in the data.
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Introduction

A long tradition in the business-cycle literature evaluates models by their ability to account for

salient moments of data, such as the relative volatility and correlation with GDP of key macroe-

conomic aggregates. Although there exists a broad consensus on moments concerning, for

example, the behavior of consumption, investment, or unemployment over the business cycle,

disagreement lingers, both in terms of theory and measurement, over the cyclical behaviour of

markups (see, e.g., Bils et al., 2018 and Nekarda and Ramey, 2013, 2020).1

In this paper, we re-examine this question by studying the cyclical properties of markups at the

firm, sector, and aggregate level, both theoretically and empirically, based on French admin-

istrative data. We consider a model of oligopolistic competition in which granular firm-level

shocks result not only in sector and economy-wide output changes, as in Gabaix (2011), but

also in markup dynamics. We characterize the model’s implications for comovement between

output and markups, that is, “markup cyclicality”, at various levels of disaggregation from the

bottom (firm) level up to the sector and aggregate levels, and show how this comovement is

mediated by market structure within and across sectors. We then assess the ability of our gran-

ular oligopolistic setting to reproduce salient measures of the cyclical properties of markups in

the French data at the firm, sector, and aggregate levels.

To model in a tractable way the determination and aggregation of markups in an economy fea-

turing a large but finite number of sectors with a discrete number of firms, we use a nested

CES demand structure studied in Atkeson and Burstein (2008).2 Firms compete under flexible

prices, setting markups that are increasing in within-sector sales shares.3 Firm-level shocks

follow a random growth process that generates empirically plausible firm dynamics, firm-size

distributions, and granular sectoral and aggregate fluctuations (Carvalho and Grassi 2019). The

model yields predictions for the joint behavior of within-sector market shares, markups, and

output following exogenous changes in firm-level shifters. Furthermore, the model’s conve-

1Other studies contributing to the active debate on the sign and magnitude of markup cyclicality include Bils
(1987), Hall (1988), Anderson, Rebelo and Wong (2023), and Stroebel and Vavra (2019). Additionally, a growing lit-
erature documents lower-frequency trends in markups, such as De Loecker, Eeckhout and Unger (2020) and De
Loecker and Eeckhout (2018).

2A similar framework has been used in a number of macro applications to quantify the welfare costs of mar-
ket power (Edmond, Midrigan and Xu, 2023 and Berger, Herkenhoff and Mongey, 2022), trends in market power
(De Loecker, Eeckhout and Mongey, 2021), optimal product market policy (Boar and Midrigan, 2024), managerial
compensation (Bao, De Loecker and Eeckhout, 2022), wage inequality (Deb, Eeckhout, Patel and Warren, 2024), pro-
competitive gains from trade (Edmond, Midrigan and Xu, 2015), exchange-rate pass-through (Amiti, Itskhoki and
Konings, 2019), and granularity in trade (Gaubert and Itskhoki, 2021). Other prominent work featuring fluctuations
in market power in macroeconomic models include Gali (1994), Kimball (1995), Jaimovich and Floetotto (2008), and
Bilbiie, Ghironi and Melitz (2012).

3Much of the literature on markup cyclicality is motivated by the implications of models with nominal rigidities
(e.g., Rotemberg and Woodford (1999) for a comprehensive early survey), which depend on the nature of nominal
rigidities (prices vs. wages) and on the source of aggregate shocks (e.g., monetary vs. productivity). By contrast,
we examine how far a model with flexible prices and granular firm-level shocks can go in accounting for observed
patterns of markup cyclicality at different levels of disaggregation. See Mongey (2021) and Wang and Werning (2022)
for recent analyses of money non-neutrality in an oligopolistic model like ours with price rigidities.
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nient equilibrium aggregation yields simple sectoral and aggregate counterparts to many of

these firm-level objects.

Our first theoretical contribution is to provide simple analytic expressions showing how the

sign of markup cyclicality depends on the level of aggregation, the market structure within and

across sectors, and the set of shocked firms.4 We show that sectoral output and markups co-

move positively in response to shocks to large firms in the sector, whereas they comove nega-

tively in response to shocks to small firms. In turn, the effect of such shocks on the aggregate

markup depends on the distribution of sector-level markups and sectoral expenditure shares.

Under the additional assumption that shocks are uncorrelated across firms, we provide suf-

ficient conditions for a positive asymptotic correlation between markups and output at the

sectoral and aggregate levels.

Second, we compare theoretically the implications of our model to an alternative specifica-

tion in which firm-level markups are heterogeneous but constant in response to shocks (i.e.,

complete pass-through) so that sectoral and aggregate markups only change due to between-

firm reallocation and not within-firm markup changes. We show that, although within-firm

markup changes account for half of sectoral markup fluctuations in the variable markup model,

changes in sectoral and aggregate markups can be larger or smaller than in the constant

markup model, depending on parameter values, because the extent of between-firm realloca-

tion falls with incomplete pass-through. Additionally, we provide asymptotic formulas for sec-

toral and aggregate output volatility, which generalize those in Gabaix (2011) to an oligopolistic

setting with variable markups. We show how the introduction of variable markups dampens

granular aggregate volatility, acting in a similar way to a decline in the Herfindahl index. Intu-

itively, when pass-through rates are lower for larger firms the weight of large firm shocks in the

price index is effectively reduced.

Our empirical analysis and calibration of the model is based on French administrative firm-

level annual data over 26 years (1994-2019) covering approximately 400,000 firms per year.

We compute empirical distributions of firm market shares, sectoral concentration and output

over time. To obtain a measure of firm-level markups, which we then aggregate at the sector

and economy-wide levels, we follow the methodology in De Loecker and Warzynski (2012), De

Loecker et al. (2016) and De Ridder et al. (2024).5 This approach requires output elasticities for

some flexible input, which we obtain by estimating production functions at the 2-digit sector

level for a subset of firms and years where quantity information — rather than revenues only

4Grassi (2018) studies the role of input-output linkages and endogenous markups in shaping comovement of
sector-level variables, providing an analytical characterization of the impact of microeconomic shocks on aggregate
output using an approximation with respect to the deep parameters of the model. Our analytic results make use of
a different approximation with respect to firm-level idiosyncratic shocks, similar to the one used in, for example,
Gopinath et al. (2010), Burstein and Gopinath (2014), and Amiti et al. (2019) in the context of exchange rate shocks.

5Given the level of aggregation in our baseline dataset, we do not measure markups at the level of geographic
regions, as in Anderson et al. (2023), or products, as in De Loecker et al. (2016). For consideration of pricing with
multi-product firms in a similar framework to ours, see Hottman et al. (2016).
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— is available and then applying these estimates to the full sample of firms. By using firm-level

quantities instead of revenues, our markup measures circumvent some of the biases discussed

in Bond et al. (2021) and De Ridder et al. (2024). We use our measure of markups to calculate

several metrics of markup cyclicality that we compare with model-generated data over short

(25-year) samples.

We start by analyzing a basic mechanism in our oligopolistic setting: within a narrowly de-

fined sector, a firms’ market power is increasing in its market share. This relationship implies a

positive correlation between firm-level markup and firm-level market share, both in the cross

section and over time. Moreover, aggregating firm-level outcomes implies the same correlation

between sectoral markups and sectoral concentration. We find support for these predicted cor-

relations in the French data, both at the firm and at the sector levels, in the cross section, and

over time.6 Moreover, changes in firm-level markups account for a sizable portion of changes

in sectoral markups both in our model (50%) and in the data (59% for the median sector).7

Second, we examine in the data and calibrated model three measures of markup cyclicality.

We start by examining how firm-level markups covary with sector-level output. We find that

markups are “countercyclical” for the average firm but this relation switches sign for large firms.

This is consistent with findings in Hong (2017) that markups are more countercyclical for small

firms than for large firms. Our model reproduces this heterogeneity in markup cyclicality be-

cause the typical sectoral expansion is driven by shocks to large firms and these firms increase

markups as their market share rises. Consistent with this, we show that market shares of large

firms are procyclical with respect to sectoral output.

We then proceed to evaluate notions of sector-level markup cyclicality. Following Nekarda and

Ramey (2013) (the working paper version of Nekarda and Ramey, 2020), we ask whether sector

markups comove with sector output over the business cycle. Like Nekarda and Ramey (2013)

for the US, we find evidence for a positive systematic comovement between the two measures,

or “procyclicality”, in the French data. The model simulations also reproduce this fact, as an-

ticipated in our theoretical discussion. Also consistently with the model mechanism, we find

that in the data, sectoral expansions tend to be associated with an increase in sectoral con-

centration. Finally, we follow the work of Bils et al. (2018), who investigate yet another notion

of cyclicality: the extent to which sector level markups comove with aggregate output. While

sectoral markups in our data display robust procyclical patterns within their own sectors, their

relationship with aggregate output is less robust both in terms of sign (ranging from acyclical

to countercyclical) and significance. Simulations of our model imply that this comovement

measure is not statistically different from zero.

6Relatedly, Brooks et al. (2021) and Dhyne et al. (2022) provide evidence of a positive relation between market
shares and markups in the time series using firm-level data from China and Belgium, respectively.

7This is consistent with Figure 3 in Baqaee and Farhi (2019), showing that within-firm changes in markups in the
US are quantitatively important in accounting for high frequency movements in aggregate markups.
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Overall, we document seemingly conflicting patterns of markup cyclicality across different lay-

ers of aggregation despite using a single dataset and measure of firm-level markups. Hence, by

exploiting different reduced-form measures of markup cyclicality, two researchers may arrive

at opposing conclusions even within a single dataset. Our model can reproduce qualitatively,

and sometimes quantitatively these different reduced-form measures of markup cyclicality.

Finally, we examine the model’s implications for fluctuations in aggregate markups and out-

put. Our baseline calibration features only granular firm-level shocks and abstracts from ag-

gregate shocks that leave the firm-size distribution unchanged because, in our model, they

do not affect markups. We use this quantitative laboratory featuring realistic heterogeneity

within and across sectors to quantitatively assess the contribution of idiosyncratic shocks to

aggregate output and markup fluctuations. Importantly, compared to prior work on the gran-

ular origin of business cycles (e.g. Gabaix 2011 and Carvalho and Grassi 2019), our model fea-

tures movements in desired markups that can partly offset the impact of own firm-level shocks

or magnify the impact from shocks to competing firms.8 Our quantitative model generates

roughly 25% (on average, across 25-year simulated samples) of the volatility of aggregate out-

put in the French data. To put this number in perspective, it is slightly lower than the 30% ratio

reported in Carvalho and Grassi (2019) for an heterogeneous firm model featuring granular but

price-taking firms calibrated to US data. Furthermore, our model additionally yields a ratio of

markup volatility relative to output volatility of 0.36, close to the 0.40 ratio observed in data.

Turning to aggregate markup cyclicality, our model implies a counterfactually large and pos-

itive point estimate for the correlation between aggregate output and markups relative to the

data. However, there is substantial variation in point estimates across 25-year simulated sam-

ples. This is because, as our analytic expressions show, the extent of markup cyclicality de-

pends on the set of shocked firms, which vary across small samples. Moreover, superimposing

aggregate productivity shocks to account for the overall aggregate volatility reduces this corre-

lation significantly. Finally, the magnitude and cyclicality of aggregate markups in our model

is not very different to the case in which we counterfactually fix markups at their initial, het-

erogeneous equilibrium level. Of course, rather than exogenously fixing markups, our model

provides a unified theory of both markup (level) heterogeneity across firms and endogenous

8Gaubert and Itskhoki (2021) study the granular origins of a country’s comparative advantage in an oligopolistic
framework that is similar to ours. For work on the granular origins of business-cycle fluctuations — but featuring
either perfect competition or constant markups — see Carvalho and Gabaix (2013) on the evolution of business-
cycle volatility over time and across countries and di Giovanni and Levchenko (2012) or di Giovanni et al. (2018) for
granular settings linking trade, aggregate volatility, and cross-country comovement. di Giovanni et al. (2014) provide
an empirical benchmark for the role of granularity in aggregate fluctuations. Pasten et al. (2020) examine aggregate
granular fluctuations in a multi-sector model allowing for changes in markups due to nominal price rigidities. Our
emphasis on the micro origins of aggregate fluctuations is also related to the literature on production networks.
See Acemoglu et al. (2012) for an initial benchmark, and Grassi (2018) for an analysis of how market power distorts
the propagation of shocks along input linkages. Baqaee and Farhi (2019) provide a very general characterization
of the impact of microeconomic shocks on aggregate productivity and output in a large class of models in which
productivities and wedges (e.g., markups) are exogenous primitives. Baqaee et al. (2023) study the role of variable
markups in shaping the aggregate implications of changes in market size.
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markup changes.

The paper is organized as follows. In Section 1, we present our granular oligopolistic setup and

describe the equilibrium from the bottom (firm) level to the aggregate level. In Section 2, we

characterize analytically various measures of markup cyclicality at various aggregation levels.

In Section 3, we discuss our French administrative firm data, the markup-estimation strategy,

and the model calibration. In Section 4, we explore the relationship between markups and mar-

ket shares in the model and data. In Section 5, we compare a host of markup-cyclicality metrics

in the French data and model-generated data. Finally, in Section 6, we examine fluctuations in

aggregate markups and output implied by the model. Section 7 concludes. In the Online Ap-

pendix we provide proofs, details on markup estimation, additional results, and robustness

checks.

1 Model

Our model consists of a representative household that supplies labor and consumes a fixed set

of goods. These goods are produced by a discrete number of flexible-price firms that compete

oligopolistically and are owned by the representative household. In this section, we describe

the model and characterize the equilibrium, first within a sector and then at the aggregate level.

1.1 Preferences and technologies

Households have intratemporal preferences at time t over consumption of a final composite

good, Yt, and labor, Lt, represented by the utility function

U (Yt, Lt) =
1

1− η
Y 1−η
t − f0

1 + f−1
L1+f−1

t ,

where f ≥ 0 is the Frisch elasticity of labor supply, and η ≤ 1 is the constant relative risk

aversion (which in our model shapes income effects in labor supply). Households choose con-

sumption and labor to maximize utility subject to the constraint that consumption expendi-

tures must not exceed the sum of wage payments and aggregate profits.

The final good aggregates output of N sectors according to a constant-elasticity-of-substitution

(CES) aggregator:

Yt =

[
N∑
k=1

A
1

σ

k Y
σ−1

σ

kt

] σ

σ−1

,

where Ykt denotes sector k output, Ak is a demand shifter for sector k which we assume is

constant over time,and σ ≥ 1 is the elasticity of substitution across sectors.
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Each sector k is itself a CES aggregator of the output of Nk individual firms given by

Ykt =

[
Nk∑
i=1

A
1

ε

kitY
ε−1

ε

kit

] ε

ε−1

,

where Ykit denotes the output of firm i in sector k, Akit is a firm-quality shifter, and ε is the

elasticity of substitution between the output of firms in sector k.9 We assume σ ≤ ε, so that

goods are more substitutable within sectors than across sectors. With a finite number of sectors

and a discrete number of firms per sector, firm-level shocks can generate aggregate fluctuations

as in Gabaix (2011). By contrast, with a continuum of sectors, as in Atkeson and Burstein (2008),

firm-level shocks would not generate aggregate fluctuations.

Firm i in sector k produces output according to the constant-returns-to-scale technology:

Ykit = ZkitLkit, (1)

where Zkit denotes the productivity of firm i in sector k and Lkit is a variable input, employ-

ment, that is perfectly mobile across firms.10 Labor market clearing requires that the sum of

employment across all firms equals aggregate labor, Lt.11 We assume that the number of firms

per sector, Nk, is exogenously given.12

We introduce assumptions about the stochastic process of firm-level shocks Akit and Zkit in

Section 2 for our asymptotic results and in Section 3 for our calibration strategy.

9The model’s implications for markups, market shares, and concentration measures are unchanged if Akit is a
taste shock. However, measures of aggregate output calculated using chain-weighted deflators are path-dependent
in the presence of taste shocks (i.e. growth between t and t′ depends on the sequence of shocks between t and t′);
see e.g. Baqaee and Burstein (2022). For this reason, we abstract from taste shocks.

10In Appendix A.7 we provide analytic results allowing for decreasing returns to scale at the firm level.
11Our results in Section 2 on firm-level and sectoral-level outcomes are unchanged if the variable input, Lkit,

is a composite of multiple inputs (e.g., labor, intermediate goods, and capital) that is common across firms in the
sector. The specific assumptions on the composition of this variable input matter only for the aggregate response
of the economy to given firm-level shocks. When estimating markups in Section 3, we assume the input Lkit is a
translog combination of labor, capital, materials, and services inputs with parameters that vary by sector. We then
compare measures of cyclicality of estimated markups in the data with measures of cyclicality implied by our model
in Section 5.

12Endogenizing the number of firms per sector via a free-entry condition is computationally challenging in our
model with oligopolistic competition, granular firm-level shocks, and realistic sectoral heterogeneity, requiring aux-
iliary assumptions to select among multiple equilibria with different sets of entering firms (see e.g. Berry 1992 and
Atkeson and Burstein 2008). However, if entering and exiting firms have low market shares, changes over time in the
number of firms would have small effects on sectoral and aggregate markups. Whereas in our data the number of
firms changes year to year, in Appendix D we show robustness of our main empirical results to restricting the sample
each period to continuing firms.
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1.2 Market structure and sector equilibrium

We now describe the equilibrium in a sector. Firm i in sector k setting a non-quality adjusted

price Pkit faces demand Ykit = AkAkit (Pkit)
−ε (Pkt)

ε−σ P σ
t Yt, where the sector k price is

Pkt =

[
Nk∑
i=1

AkitP
1−ε
kit

] 1

1−ε

, (2)

and the aggregate price is

Pt =

[
N∑
k=1

AkP
1−σ
kt

] 1

1−σ

.

The markup for firm i in sector k, which we characterize below, is defined as the ratio of price

to marginal cost,

µkit ≡
ZkitPkit

Wt
, (3)

where Wt is the price of the variable input (i.e., the wage). This markup determines how the

firm’s revenues are split into labor payments and profits, such that

LkitWt = µ−1
kitPkitYkit, and Πkit =

(
1− µ−1

kit

)
PkitYkit.

The market share of firm i in sector k, skit ≡ PkitYkit

PktYkt
, can be expressed in terms of markups

and firm shifters, which are defined as a composite of quality and productivity shifters, Vkit ≡
AkitZ

ε−1
kit . Specifically,

skit =
Vkitµ

1−ε
kit∑Nk

i′=1 Vki′tµ
1−ε
ki′t

. (4)

One can consider two alternative market structures. Firms maximize profits by choosing price,

taking other firms’ prices as given (Bertrand competition), or by choosing quantity, taking other

firms’ quantities as given (Cournot competition). In both cases, firms take into account that

they are non-atomistic in their sector, and hence their choices affect sectoral output and prices.

We assume, however, that individual firms behave as if the sector they produce in is atomistic

in the aggregate economy (as in the case of a continuum of sectors).13

Under these assumptions, equilibrium markups and market shares in each sector k solve the

13In Appendix A.8 we solve for markups in the case in which each firm maximizes real profits internalizing the
effect of their individual choice of output or prices on aggregate output and the real wage, thus relaxing our baseline
behavioral assumption. Firms do not internalize, however, the impact that changes in profits have on the welfare of
the firm’s owner (Azar and Vives, 2021). We show that markups depend not only on the firm’s sectoral sales share,
but also on the firm’s sectoral employment share as well as the firm’s economy-wide share in sales and employment,
which increases the computational burden of solving the model. Applying the new formula using the sales and
employment shares in our baseline calibration results has a negligible impact on markup levels compared to our
baseline. This is because most sectors in our data are quite small.
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non-linear system of equations given by the market share equation (4) and

µkit =


ε

ε−1

[
1−

(
ε/σ−1
ε−1

)
skit

]−1
under Cournot,

ε
ε−1

[
1−( ε−σ

ε )skit

1−( ε−σ

ε−1 )skit

]
under Bertrand.

(5)

Under both formulations, since ε > σ, markups are increasing in market shares,14 with

lim
skit→0

µkit =
ε

ε− 1
and lim

skit→1
µkit =

σ

σ − 1
. If ε = σ, markups are common across firms and

constant over time as in the standard monopolistically competitive model. In our analytic and

quantitative results, we focus on the case of Cournot competition. It generates more markup

variation than Bertrand and is thus better able to match estimates of incomplete pass-through

and markup-size relationship. In Appendix A, we provide analytic results under Bertrand.

Two remarks are in order about firm shifters. First, firm-level market shares and markups in

sector k depend only on relative firm shifters across firms within this sector. This result implies

that market shares and markups in sector k do not vary in response to proportional changes in

shifters to all firms in sector k (including sectoral demand shifters Ak), shocks in other sectors,

or changes in the aggregate wage. It follows that aggregate shocks to firms in all sectors generate

fluctuations in aggregate output but not in aggregate markups. For this reason, in our baseline

quantitative analysis we abstract from standard aggregate productivity shocks.

Second, the split of firm shifters into quality and productivity does not matter for the model im-

plications on markups, concentration and output (for the latter, this is as long as deflators use

quality-adjusted prices) at the firm, sector, or aggregate levels. In practice, price deflators used

by statistical agencies typically do not incorporate high-frequency changes in quality. There-

fore, in order to compare output in the model and data, we only consider firm-level productivity

shocks and abstract from quality shocks.

1.3 Sectoral outcomes

We now describe how the model aggregates outcomes from the firm level to the sector level.

We define sectoral markup as the ratio of sectoral revenues to labor payments,

µkt ≡
PktYkt
WtLkt

, (6)

14The property is satisfied in a variety of models with variable elasticity of demand (see, e.g., the reviews in
Burstein and Gopinath (2014) and Arkolakis and Morlacco (2017))
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where sectoral employment is Lkt =
∑Nk

i=1 Lkit. Sectoral markups can be expressed as an har-

monic mean (weighted by market shares) of firm-level markups,

µkt =

[
Nk∑
i=1

µ−1
kitskit

]−1

. (7)

Substituting the markup-market-share relationship (equation 5) under Cournot competition,

we can express the sectoral markup, µkt, as a simple function of the sector’s Herfindahl-

Hirschman index, HHIkt =
∑Nk

i=1 s
2
kit:

15

µkt =
ε

ε− 1

[
1−

(
ε/σ − 1

ε− 1

)
HHIkt

]−1

. (8)

Note the positive relationship between sectoral markup and HHI takes the same form as the

firm-level relationship between markup and market share in equation (5). In the same way

that a firm with a large market share charges a higher markup, a sector with a large average

market share, that is, a high HHI, has a high sectoral markup as long as ε > σ.16

Sectoral markups can be expressed as the standard ratio between sectoral price and marginal

cost (i.e., the ratio of wage to sectoral productivity), µkt = PktZkt/Wt. Sectoral productivity,

Zkt ≡ Ykt/Lkt, can be expressed in terms of firm-level markups and firm shifters as

Zkt =

(∑Nk

i=1 Vkitµ
1−ε
kit

) ε

ε−1∑Nk

i=1 Vkitµ
−ε
kit

. (9)

1.4 Aggregate outcomes

We now describe how the model aggregates outcomes from the sector level to the aggregate

level. We define aggregate markup as the ratio of aggregate revenues and labor payments,

µt ≡
PtYt
WtLt

=

[
N∑
k=1

sktµ
−1
kt

]−1

. (10)

As indicated by the second equality, aggregate markups can be expressed as a harmonic

weighted average of sectoral markups, where sectoral expenditure shares are determined by

sectoral markups and sectoral shifters Vkt ≡ AkZ
σ−1
kt ,

skt ≡
PktYkt
PtYt

=
Vkt (µkt)

1−σ∑
k′ Vk′t (µk′t)

1−σ . (11)

15The HHI is an average of market shares, weighted by market shares themselves, and hence ranges between 0
and 1.

16A similar mapping between sectoral markups and concentration indices can be obtained under Bertrand com-
petition (see Grassi, 2018).
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Alternatively, under Cournot we can express the aggregate markup as a simple function of av-

erage sectoral HHI (weighted by sectoral expenditure shares) that mirrors the expressions for

firm-level and sector-level markups in equations (5) and (8), respectively:

µt =
ε

ε− 1

[
1−

(
ε/σ − 1

ε− 1

) N∑
k=1

sktHHIkt

]−1

.

The weighted average of sectoral HHIs is equal to the average market share across firms

weighted by firms’ expenditure share in the whole economy.17 When this weighted-average

economy-wide market share is high, the aggregate markup is high.

Aggregate markups can also be expressed as the standard ratio between aggregate price and

aggregate marginal cost, µt = PtZt/Wt, where aggregate productivity, Zt ≡ Yt/Lt, can be ex-

pressed in terms of sectoral markups and sectoral shifters as

Zt =

(∑N
k=1 Vktµ

1−σ
kt

) σ

σ−1(∑N
k=1 Vktµ

−σ
kt

) . (12)

Finally, aggregate output and labor are given by

Y
η+ 1

f

t =
Z

1+ 1

f

t

f0µt
and Lt =

Yt
Zt

=
Z

1−η

η+ 1
f

t

(f0µt)
1

η+ 1
f

. (13)

The aggregate markup µt distorts the leisure/consumption choice relative to the optimal allo-

cation.

1.5 Summary of equilibrium

Our model aggregates outcomes in a very parsimonious manner from the firm level to the sec-

tor level, and from the sector level to the aggregate level. Here we summarize how to solve

for prices and quantities as a function of time t of firm shifters, {Vkit}, and sectoral demand

shifters, {Ak}.

Equilibrium firm-level markups and market shares, µkit and skit, are the solution to equations

(4) and (5). Sectoral markups and productivities, µkt and Zkt, are solved from equations (7) and

(9), respectively, and sectoral expenditure shares, skt, from equation (11).

Aggregate markup, productivity, output, and employment, µt, Zt, Yt, and Lt, are solved from

equations (10), (12), and (13). Setting Wt = W̄ as the numeraire, sectoral and aggregate price

levels, Pkt and Pt, are given by Pkt = µktWt/Zkt and Pt = µtWt/Zt. Sectoral output is solved

17Specifically,
∑N

k=1 sktHHIkt =
∑N

k=1

∑Nk
i=1 skts

2
kit =

∑N
k=1

∑Nk
i=1

PktYkt
PtYt

PkitYkit
PktYkt

skit =
∑N

k=1

∑Nk
i=1

PkitYkit
PtYt

skit.
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from

Ykt = AkP
−σ
kt P σ

t Yt,

and sectoral employment using Lkt = Ykt/Zkt. Firm-level expenditures and employment,

PkitYkit and Lkit, are solved from PkitYkit = skitPktYkt and equation (6), respectively. Finally,

given a split of firm shifters Vkit into productivity {Zkit} and quality {Akit}, firm-level output

Ykit and price Pkit are solved from equations (1) and (3), respectively.

In the following section, we use a first-order approximation to characterize the equilibrium

response to firm-level shocks at the firm, sectoral, and aggregate levels.

2 Analytic Results

In this section, we characterize, up to a first-order approximation, the equilibrium response of

markups, prices, and output to firm-level shocks at the firm, sectoral, and aggregate levels.

We first introduce a first-order approximation to solve for changes in firm-level markups and

market shares in a sector. We then develop expressions for changes in prices, markups, and

output in response to firm-level shocks, first at the sector level and then at the aggregate level.

We provide expressions for asymptotic covariances between markup and output changes at

different aggregation levels under the additional assumption that firm-level shocks are i.i.d.

across firms and over time with variance σ2
v ≡ Var

[
V̂kit

]
. We focus on the case of Cournot

competition, and present results under Bertrand in the appendix. We highlight the role of vari-

able markups versus constant markups in shaping markup cyclicality, as well as the impact of

variable markups on aggregate output volatility.

2.1 Firm-level outcomes

Consider an initial equilibrium in sector k with market shares {ski} and markups {µki} where,

for simplicity, we omit time subscripts in the initial equilibrium. Taking a first-order approx-

imation of the expressions for market share (equation 4) and firm-level markup (equation 5),

changes in the equilibrium market shares and markups are the solutions to the following linear

system of equations

ŝkit = V̂kit + (1− ε) µ̂kit −
Nk∑
i′=1

ski′
(
V̂ki′t + (1− ε) Γki′ ŝki′t

)
, (14)

µ̂kit = Γkiŝkit. (15)

Variables with hats denote log differences at time t relative to the initial equilibrium, e.g. V̂kit ≡
log Vkit− log Vki, and Γki denotes the markup elasticity with respect to market share for firm i in

11



sector k evaluated at the initial equilibrium.

Markup elasticities under Cournot are, by equation (5),

Γki ≡
∂ logµki

∂ log ski
=

(
ε
σ − 1

)
ski

ε− 1−
(
ε
σ − 1

)
ski

.

As discussed above, if ε > σ, markups are increasing in market shares. That is, Γki ≥ 0, with

strict inequality if ski > 0. Moreover, markup elasticities are increasing in market shares. This

property is satisfied in a variety of models of demand with variable elasticity, as discussed in

Burstein and Gopinath (2014) and Arkolakis and Morlacco (2017).

We now introduce pass-through elasticities, which are not required to solve for sectoral market

shares and markups but, nevertheless, we use in our analytic results that follow. Changes in

firm-level prices are given by P̂kit = −Ẑkit + µ̂kit where we used that the wage is the numeraire.

Combined with equations (15) and ŝkit = Âkit + (1− ε)
(
P̂kit − P̂kt

)
, we obtain

P̂kit = αki

(
−Ẑkit + ΓkiÂkit

)
+ (1− αki) P̂kt, (16)

where αki is the pass-through rate governing how firm-level prices respond to idiosyncratic

shocks (given changes in sectoral price), given by

αki =
1

1 + (ε− 1) Γki
. (17)

Conversely, 1 − αki governs how prices respond to changes in sectoral price (given changes in

marginal cost). Because markup elasticities are increasing in market shares (if ε > σ), pass-

through rates are decreasing in market shares.18 To isolate the role of changes in markups in

response to shocks, we consider an alternative case in which markups are fixed at the initial

equilibrium levels, imposing Γki = 0 and αki = 1.

2.2 Sectoral outcomes

In this section, we characterize how sectoral prices, markups, and output respond to firm-level

shocks, and provide expressions for variances and covariances of markup and output changes

over long realizations of shocks.

Sectoral prices As a first step in understanding changes in sectoral output, we solve for

changes in sectoral prices (relative to the the numeraire, i.e., wage), which are related to sectoral

18We can further solve for P̂kit using P̂kt = skiP̂kit + (1 − ski)P̂k−it, where P̂k−it is the competitors’ price index

defined in Amiti et al. (2019). We can rewrite (16) as P̂kit = α̃ki

(
−Ẑki + ΓkiÂkit

)
+ (1− α̃ki) P̂k−it, where α̃ki =

αki
1−(1−αki)ski

, which is a U-shaped function of market shares ski.

12



output by CES demand, Ykt = AkP
−σ
kt P σ

t Yt.

Taking a first-order approximation of the sectoral price definition (2) and using firm-level price

changes (16), log changes in sectoral prices can be expressed as a weighted average of firm

shifters,

P̂kt = − 1

ε− 1

∑Nk

i=1 skiαkiV̂kit∑Nk

i=1 skiαki

, (18)

where the weights are given by the product of market shares, ski, and pass-through rates, αki.

Because ε ≥ 1, sectoral prices fall in response to an increase in firm shifter.

To understand how sectoral price changes are shaped by pass-through rates, note that if αki =

αk, P̂kt is independent of αk for given market shares ski in the initial equilibrium. That is, the

response in sectoral price is identical to that if markups are fixed at their initial level (αki = 1).

Intuitively, as pass-through αk falls, the larger markup change by a firm to an own shock is

exactly offset by a larger change in markup, in the opposite direction, of its competitors.

With heterogeneity in pass-through rates, because αki is decreasing in ski, there is a cutoff mar-

ket share s̄pk such that a positive shock to firm i with ski > s̄pk results in a smaller reduction

in sectoral prices than if markups are fixed at their initial level. Intuitively, firm i’s increase in

markup more than offsets the markup decrease of its competitors. Conversely, a positive shock

to firm i with ski < s̄pk results in a larger reduction in sectoral prices than if markups were fixed

at their initial level.19

From equation (18), the asymptotic variance of price changes in sector k assuming firm-level

shifters are i.i.d. with common variance σ2
v is

Var
[
P̂kt

]
=

(
σv

ε− 1

)2 Nk∑
i=1

(
αkiski∑
i′ αki′ski′

)2

. (19)

If markups are fixed at their initial level (or, more generally, if αki = αk), this variance is propor-

tional to the sectoral HHI, as in Gabaix (2011): Var
[
P̂kt

]
=
(

σv

ε−1

)2∑Nk

i=1 s
2
ki. Comparing this

expression with (19), we note Var
[
P̂kt

]
is lower under variable markups than under constant

markups if and only if the variance of αkiski∑
i′ αki′ski′

is lower than the variance of ski. Because αki

is decreasing in ski, this condition is satisfied if skiαki is increasing in ski (see condition A7 in

Appendix A.3). Intuitively, under this condition, pass-through rates are lower for larger firms,

effectively reducing the weight of large firm shocks in the price index (with similar effects on

volatility as a decline in the HHI).

Sectoral markups Changes in sectoral markups, defined in equation (7), can be decomposed

into changes in markups within firms and the reallocation of expenditures between firms with

19The threshold s̄pk is defined implicitly by αk(s̄
p
k) =

∑Nk
i=1 skiαki.
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heterogeneous markups:

µ̂kt =

Nk∑
i=1

ski
µk

µki
(µ̂kit − ŝkit) . (20)

In Appendix A, we derive the following expression for changes in sectoral markups:20

µ̂kt = 2

(
1

σ
− 1

ε

)
µk

Nk∑
i=1

skiαki

[
ski −

∑
i′ s

2
ki′αki′∑

i′ ski′αki′

]
V̂kit. (21)

The following proposition states that a positive shock to firm i results in an increase in the

sectoral markup if and only if firm i is sufficiently large in its sector.

Proposition 1 Consider a positive shock to firm i in sector k, V̂kit > 0. Then, under Cournot
competition, sector k markup increases, µ̂kt > 0, if and only if ski >

∑
i′ s

2
ki′αki′/

∑
i′ ski′αki′ .

Intuitively, recall from equation (20) that changes in sectoral markups reflect changes in firm-

level markups (within term) and between-firm reallocation (between term). Consider first the

within term. A positive shock to firm i raises firm i’s markup and reduces it for competing

firms. The former dominates if firm i is large, whereas the latter dominates if firm i is small.

Consider now the between term. A positive shock to firm i reallocates market shares towards

firm i, increasing the sectoral markup if firm i’s markup is sufficiently high (or, equivalently, if

its market share is sufficiently large). Therefore, the within and between terms push the sectoral

markup in the same direction.

The “2” in front of (21) reflects the fact that the magnitude of the within term is equal to

the magnitude of the between term (and hence each accounts for 50% of changes in sectoral

markups). A change in parameters (e.g., an increase in ε − σ) that increases the sensitivity

of markups to firm-level shocks (increasing the within term) also increases the dispersion of

markups across firms (increasing the between term). In Appendix A.1 we show this 50-50

within/between decomposition of changes in sectoral markups under Cournot competition

holds globally not only up to a first order.

How do changes in sectoral markups compare in the specification with variable markups ver-

sus the specification with constant markups in which sectoral markups change only due to

between-firm reallocation? If firm-level markups are fixed at their initial level (by imposing

Γki = 0 and αki = 1), changes in sectoral markups in equation (20) are:

µ̂kt =

Nk∑
i=1

ski

(
1− µk

µki

)
V̂kit. (22)

20Ex-ante firm heterogeneity is a necessary condition for sectoral markups to change in response to firm-level
shocks. To see this, if ski and µki are equal across all firms in sector k, equations (15), (20), and

∑Nk
i=1 skiŝki = 0

imply that µ̂kt = 0.

14



In response to a positive shock to firm i, sectoral markups increase if and only if µki > µk.

In general, we cannot easily compare (21) and (22). To make analytic progress, in Appendix A.2

we restrict the extent of ex-ante firm heterogeneity to two types and provide a simple sufficient

condition for sectoral markups to change by more (and display a higher variance) under vari-

able markups than under constant markups. Intuitively, changes in sectoral markups can be

smaller under variable markups than under constant markups because the larger response of

sectoral markups due to changes in firm-level markups is more than offset by a smaller extent

of between-firm reallocation due to incomplete pass-through.

To summarize, even though changes in sectoral markups under variable markups are twice

as large as the between-firm reallocation term for any firm-level shocks, variable markups do

not necessarily magnify changes in sectoral markups relative to the model specification with

constant markups, because incomplete pass-through mutes the extent of between-firm reallo-

cation

Covariance between sectoral prices and sectoral markups Recall from previous results that

in response to a positive shock to firm i in sector k, the sectoral price falls, whereas the sectoral

markup can increase or decrease depending on the firm’s initial markup. In finite samples,

comovement can be positive or negative depending on which firms are shocked. We now cal-

culate the asymptotic covariance between sectoral price and markup changes, which shapes

the covariance between sectoral output and markup that we examine below.

To build intuition, consider first the case of constant markups,

Cov
[
µ̂kt, P̂kt

]
= − 1

ε− 1

Nk∑
i=1

s2ki

[
1− µk

µki

]
× σ2

v . (23)

Thus, sectoral markups and prices are negatively correlated as long as large firms within sec-

tor charge higher markups. Intuitively, shocks to small firms induce a positive comovement,

whereas shocks to large firms induce a negative comovement. Overall, comovement is nega-

tive because shocks to large firms induce larger changes in sectoral price than shocks to small

firms.

With variable markups, using equations (18) and (21) we obtain

Cov
[
µ̂kt, P̂kt

]
= −

(
2µk

ε− 1

)(
1

σ
− 1

ε

) Nk∑
i′=1

s2ki′αki′

Nk∑
i=1

[
s2kiαki∑Nk

i′=1 s
2
ki′αki′

− skiαki∑Nk

i′=1 ski′αki′

]
skiαki∑Nk

i′=1 ski′αki′
× σ2

v .

(24)

When ε > σ, sectoral prices and markups comove negatively in long samples if and only if

Nk∑
i=1

[
s2kiαki∑Nk

i′=1 s
2
ki′αki′

− skiαki∑Nk

i′=1 ski′αki′

]
skiαki∑Nk

i′=1 ski′αki′
> 0. (25)
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If firms are ex-ante homogeneous, equation (25) holds with equality and sectoral markups are

constant over time. If firms are heterogeneous in the initial equilibrium, inequality (25) may or

may not hold. The following proposition, proven in Appendix A.3, states that if pass-through

rates do not fall too strongly with market shares, inequality (25) holds, so sectoral prices and

markups comove negatively.

Proposition 2 Under Cournot competition, if firms are ex-ante heterogeneous and skiαki is in-

creasing in ski, sectoral markup and price comove negatively, Cov
[
µ̂kt, P̂kt

]
< 0.

In Appendix A.2 we show that skiαki is increasing in ski provided that market shares are not

too large. Intuitively, the condition that skiαki is increasing in ski implies, by equation (18), that

sectoral prices are more responsive to large firm shocks than to small firm shocks (i.e., the lower

pass-through rate by large firms does not fully offset their higher weight in the price index). The

fact that sectoral markups increase in response to large firm shocks and decrease in response

to small firm shocks implies a negative covariance between sectoral price and markup, as in

the case of constant markups.

Covariance between sectoral output and markups Changes in sector k output in response to

sector k shocks, derived in Appendix A.4, are:

Ŷkt = −
[
σ (1− sk) +

(
f + 1

fη + 1
+

(
σ − 1

fη + 1

)(
1− µ

µk

))
sk

]
P̂kt +

skµ

µk

µ̂kt

fη + 1
. (26)

A sufficient condition for sectoral output and price to move in opposite directions is that sec-

tor k is small in the aggregate (sk → 0) or that disutility of labor is linear (f → ∞). In this

case, the previous results on sectoral price apply immediately to sectoral output (with the op-

posite sign).21 Specifically, in response to a positive shock to firm i in sector k, sectoral out-

put increases whereas sectoral markup can increase or decrease depending on the firm’s initial

markup.

Taking into account a long sequence of firm shocks in sector k, the covariance between changes
in sectoral output and sectoral markup is:

Cov
[
Ŷkt, µ̂kt

]
= −

σ (1− sk) +
f + 1 + (σ − 1)

(
1− µ

µk

)
fη + 1

sk

Cov
[
P̂kt, µ̂kt

]
+

skµ

µk

1

fη + 1
Var [µ̂kt] ,

where Cov
[
P̂kt, µ̂kt

]
is defined above. The following proposition provides sufficient conditions

for procyclical sectoral markups with respect to sectoral output.

21If f finite and sector k is sufficiently large in the aggregate, it is possible that sectoral output and price both fall
in response to positive sector k firm level shocks if sectoral markup µk is very low relative to the aggregate markup
and/or if sector k markup falls substantially when sectoral price falls.
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Proposition 3 Under the conditions of Proposition 2, sectoral markup and sectoral output co-

move positively, Cov
[
Ŷkt, µ̂kt

]
> 0, if at least one of the following conditions holds: (i) sk → 0, (ii)

f → ∞, or (iii) σ → 1. If (i)-(iii) are violated, then Cov
[
Ŷkt, µ̂kt

]
> 0 as long as sectoral markup

µk is not too low relative to the aggregate markup.

In our empirical analysis, we also examine the cyclicality between sector output and firm-level
markups. For the case of f → ∞, the covariance between changes in firm i markup and sector
k output, derived in Appendix A.4, we show that

Cov
[
Ŷkt, µ̂kit

]
=
(
σ (1− sk) + η−1sk

) αkiΓki

(ϵ− 1)
∑Nk

i′=1 ski′αki′

[
skiαki −

∑Nk

i′=1 (ski′αki′)
2∑Nk

i′=1 ski′αki′

]
× σ2

v . (27)

The following proposition states that firm-level markups are procyclical for large firms and

countercyclical for small firms:

Proposition 4 If skiαki is increasing in ski and f → ∞, firm-level markups and sectoral output

comove positively, Cov
[
Ŷkt, µ̂kit

]
> 0, if and only if ski > s̄µk , and comove negatively if and only if

ski < s̄µk , where s̄µk is defined by the condition that the square bracket in (27) is equal to 0.

Intuitively, firm-level markups are positively correlated with sectoral output in response to

own-shocks and negatively correlated in response to competitors’ shocks. Because large firms

have a disproportionate impact on sectoral price and output (if skiαki is increasing in ski), firm-

level markups are procyclical for large firms and countercyclical for small firms.22

Before presenting the aggregate results, we briefly discuss our model’s implications for changes

in markups when some prices are nominally rigid.

Discussion of firm and sector-level markups with rigid prices Whereas in this paper we

study markup fluctuations under flexible prices, markups can also fluctuate if costs change

and prices are nominally rigid. Consider the specification under Bertrand competition, and

suppose that the price of firm i in sector k at time t is stuck at P̄kit before the shocks hit.23 For a

sticky price firm, the markup is µkit = ZkitP̄kit/Wt. For flexible price firms (which do not antic-

ipate that that their price may be stuck in the future), markups are given by (5). Market shares

for all firms are determined by the system of equations (4).

In response to productivity shocks to flexible price firms, the sign of the change in sectoral

markups depends on the relative markup level of the shocked firms, as in the baseline model.

Consider now an increase in productivity of a rigid-price firm and suppose that the change

22The cutoff s̄µk differs from the cutoff defined in Proposition 1 because the condition in Proposition 1 is based on
a shock to one firm only, whereas the asymptotic covariance in Proposition 4 takes into account shocks to all firms
in the sector.

23Here for simplicity we take P̄kit as given and do not study how firms choose their reset price. For a detailed
analysis of sticky prices in a dynamic environment with oligopolistic competition, see Mongey (2021) and Wang and
Werning (2022).
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in nominal wage is negligible. The markup of the shocked rigid-price firm rises mechanically,

while markups of other firms remain unchanged (since prices and thus market shares do not

change). Hence, the sectoral markup rises irrespective of whether the shocked firm is small or

large. This force strengthens procyclical sectoral markups in comparison to the flexible-price

model.

Consider now a uniform decline in marginal costs for all firms (productivity rises relative to the

nominal wage). For firms with rigid price, markups rise. For firms with flexible price, markups

also rise since these firms lower their price and increase market share relative to sticky price

firms. Hence, markups rise for all firms. There are additional compositional effects on the

sectoral markup as market shares shift towards flexible price firms. This composition effect

increases the sectoral markup if flexible price firms charge higher markups.24 Whether the in-

crease in markups is procyclical or countercyclical depends on the source of the movement in

marginal cost. In response to an increase in productivity for all firms, markups and output rise.

This force provides another reason for procyclical markups relative to the flexible price baseline

where, recall, sectoral shocks leave markups unchanged. In response to contractionary mon-

etary policy that reduces marginal cost for all firms, markups rise but output falls, resulting in

countercyclical markups. Our flexible-price baseline abstracts from this well-studied source of

countercyclical markups.

2.3 Aggregate outcomes

In this section, we characterize changes in aggregate price (i.e., the inverse of the real wage,

given that the wage is the numeraire), markup, productivity, and output. We provide expres-

sions for the variance of aggregate output and for sectoral and aggregate markup cyclicality

with respect to aggregate output, which we consider in our empirical analysis.

Up to a first order, changes in the aggregate price are P̂t =
∑

k skP̂kt. Based on our results above,

any positive firm-level shock in sector k reduces the corresponding sectoral price and therefore

reduces the aggregate price (or increases the real wage) proportionately to the share in expen-

ditures of sector k. Whether the real wage increases more or less under variable markups rela-

tive to constant markups depends, as discussed above, on the shocked firm’s relative size in its

sector.

Changes in aggregate markup can be decomposed into a within-sector markup term and a

reallocation term, analogous to the decomposition of sectoral markups in equation (20):

µ̂t =
∑
k

sk
µ

µk
µ̂kt + (1− σ)

∑
k

sk

(
1− µ

µk

)
P̂kt. (28)

24For evidence that prices are more flexible for large firms (which in our model charge higher markups), see
Goldberg and Hellerstein (2009) and D’Acunto et al. (2018).
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In response to a positive shock to a firm in sector k, aggregate markup can increase or decrease.

The first (within) term in (28) is positive if the shocked firm is relatively large (and sets a higher

markup) in sector k. The second (between) term in (28) is positive, when σ > 1, if sector k has

a relatively high markup relative to the aggregate markup.

Changes in aggregate productivity, using Ẑt = µ̂t − P̂t, can be expressed in terms of changes in

sectoral markups and prices as

Ẑt =
∑
k

sk
µ

µk
µ̂kt −

∑
k

sk

[
1 + (σ − 1)

(
1− µ

µk

)]
P̂kt. (29)

Finally, by equation (13), changes in aggregate output are

Ŷt = (f−1 + η)−1
[
f−1Ẑt − P̂t

]
. (30)

With linear disutility of labor (f → ∞), the aggregate productivity term drops, so Ŷt =

−η−1
∑

k skP̂kt. A positive firm-level shock in sector k reduces the sectoral price and increases

aggregate output. Based on the discussion above on the role of variable markups for the re-

sponse of sectoral prices, the increase in aggregate output is smaller under variable markups

compared to constant markups if and only if the shocked firm has a high market share.

Variance of aggregate output The variance of aggregate output (when f → ∞) is

Var
[
Ŷt

]
= η−2

∑
k

s2kVar
[
P̂kt

]
=

σ2
v

η2 (ε− 1)2

∑
k

s2k

Nk∑
i=1

(
αkiski∑
i′ αki′ski′

)2

, (31)

where the second equality used equation (19). Based on the discussion following equation (19),

aggregate output is less volatile under variable markups than under constant markups when

pass-through rates are decreasing in size, effectively reducing the weight of large firms in the

price index (with similar effects on volatility as a reduction in market-share concentration).

In Appendix A.6 we provide an expression for the variance of aggregate output without impos-

ing f → ∞, as well as for the variance of the aggregate markup, which we use in our quantitative

analysis.

Covariance between aggregate output and markup We first calculate the covariance be-

tween aggregate output and sector k markup, which is one of the measures of cyclicality in

our empirical analysis. When calculating this covariance, we use the fact that sector k markups

are affected only by shocks to sector k firms and not by shocks to firms in other sectors. We can
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thus express this covariance as

Cov
[
Ŷt, µ̂kt

]
= Cov

[
Ŷkt, µ̂kt

]
+ σ (1− sk)Cov

[
P̂kt, µ̂kt

]
. (32)

The following proposition, proven in Appendix A.5, provides conditions under which the co-

variance between aggregate output and sector k markups is positive:25

Proposition 5 Under the conditions of Proposition 3, Cov
[
Ŷt, µ̂kt

]
> 0.

Finally, the covariance between aggregate output and aggregate markup (when f → ∞) is:

Cov
[
Ŷt, µ̂t

]
= −µ

η

∑
k

s2k
µk

Cov
[
P̂kt, µ̂kt

]
+

σ − 1

η

∑
k

s2k

(
1− µ

µk

)
Var

[
P̂kt

]
. (33)

The first term in (33) is positive if sectoral markups and sectoral prices comove negatively,

which we discussed above. The second term in (33) is positive unless larger sectors have rela-

tively lower markups.

So far, we have calculated measures of markup cyclicality considering only i.i.d firm-level

shocks. In our quantitative analysis, we also allow for aggregate productivity shocks to firms in

all sectors. In our model, in which firm-level markups are functions of market shares, markups

do not respond to aggregate shocks. Therefore, incorporating aggregate shocks leaves the co-

variance of aggregate markups and output unchanged but decreases the correlation, because

the volatility of aggregate output increases with these shocks.

From these theoretical results, we see the sign of markup cyclicality depends on the level of

aggregation, market structure within and across all industries, and the set of shocked firms.

Moreover, the sign and magnitude of covariances in finite samples may differ from those of the

asymptotic covariances we derived.

In what follows we calibrate the model to match salient features of the French firm-level data.

We use our calibrated model for two purposes. First, we evaluate quantitatively its implications

for different measures of markup cyclicality and compare these to their data counterparts. Sec-

ond, we quantify aggregate fluctuations in output and markups in response to idiosyncratic

firm-level shocks. Relative to the analytic results in this section, we relax some of the assump-

tions imposed in our propositions, solve the model non-linearly and calculate our moments in

finite samples.

25Note also that by equation (32), Cov
[
Ŷt, µ̂kt

]
≤ Cov

[
Ŷkt, µ̂kt

]
, where the inequality holds strictly if the econ-

omy has more than one sector (i.e. sk < 1 ). The fact that the covariance between sectoral markups and aggregate
output is lower than that between sectoral markups and sectoral output does not immediately extend to correlations
because, for some sectors, the variance of aggregate output is smaller than the variance of sectoral output.

20



3 Data, Estimation, and Calibration

For the remainder of this paper, we use the model above as a data-generating process from

which we simulate firm-level outcomes, which are then aggregated into sector and aggregate

time series. We then proceed to compare the resulting model-implied moments to their em-

pirical counterparts. This section describes how we use French administrative firm-level data

to obtain empirical moments of interest and to parameterize our model. We first describe the

data and how we estimate markups, and then how we calibrate the model. Appendix B provides

additional information on the data and the procedures to estimate production functions and

markups.

3.1 Data

Our empirical analysis deploys French firm-level data between 1994 and 2019. We use admin-

istrative sources for income statements and balance sheets, complemented by a firm survey

with information on quantities.

Firm-level income statements and balance sheet data are obtained from two administrative

datasets: the FICUS data covering the period 1994-2007 and the FARE dataset covering the

period 2008-2019. These datasets cover the universe of French firms and originate from the

French tax administration that collects yearly tax statements for each firm, including income

statements, balance-sheet, and demographic information. The Institut National de la Statis-

tique et des Etudes Economiques (INSEE) uses these statements to construct the FICUS-FARE

datasets. We assign firms to sectors according to the Nomenclature d’Activités Française

(NAF2008) 5-digit classification, a French industry classification similar to the 4-digit NACE

Rev 2 classification. We keep firms that were government-owned earlier in our sample since

during the period we consider most of them switched to private ownership.26

We use a subset of the variables available in the FICUS-FARE dataset: total firm revenues, wage

bill (the sum of wages and social security payments), capital (measured by fixed assets), and

expenditures on both material and service inputs. Our baseline measure of materials (which

is our choice of variable input in the estimation of markups) is the sum of expenditures on

materials and merchandises (variables ACHAMPR and ACHAMAR, respectively) net of changes

26In 2008, the NACE and NAF industry classification changed. To construct a panel of firms between 1994 and
2019 with a consistent industry classification over time, we proceed as follows. For firms for which the old and new
industry codes are observed, we apply the new code to all years. For firms for which we only observe one industry
code on either side of 2008, we assign the code that is most frequently associated with the observed industry code
(using the sample of firms where we do observe the two sectoral codes). Finally, information about government-
owned firms can be found in the variable APPGR of FICUS-FARE, which is available only before 2009. Government-
owned firms represented 0.12% of the total number of firms in 1994 and 0.05% in 2008. Over the same period, their
share of revenue fell from 7.2% to 4.2%. We thank Isabelle Mejean for sharing the computer code to merge the FICUS
and FARE datasets.
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in stocks (VARSTMP for materials and VARSTMA for merchandise).27 We consider as a separate

input expenditures on service inputs (AUTACH), including research expenditures, outsourcing

costs, and external personnel cost (including temporary workers). We use GDP deflators and

2-digit sector-price indices provided by EU-KLEMS.

We construct a measure of firm-level quantity using the survey Enquête Annuelle de Produc-

tion (EAP) conducted by INSEE. Specifically, this survey covers the universe of large firms (with

at least 20 employees or 5 million euros in annual revenues) and a representative sample of

small firms for a subset of 2-digit sectors, mainly in manufacturing, during the period 2009-

2019.28 For each firm, this dataset provides information on revenues and quantities by product,

where a product is a combination of an 8-digit code and a unit of account.29 We drop around

one-third of firm-products without quantity data. We calculate price by product for each firm

as the ratio of revenues to quantity sold. We follow De Ridder et al. (2024) and Aghion et al.

(2023) in standardizing prices by dividing them by the quantity-weighted average price of the

same product across firms in the same year. We do this because firms produce goods in differ-

ent units (e.g., kilograms and liters), and aggregation requires homogenous units. Our measure

of firm-level price in a given year is the revenue-weighted average of standardized prices across

the products the firm sells. Finally, firm-level quantity is defined as the ratio of firm-level rev-

enues to firm-level price.

For the rest of the paper, it will be useful to distinguish two samples: (i) the sample of firms

with quantity information in the EAP dataset, which we employ to estimate 2-digit sector-level

production functions; this will form the basis of our estimation sample, and (ii) the sample of

all firms in FICUS-FARE that belong to sectors covered by the EAP dataset — including those

with revenues but no quantity data — and that is used to calculate our measures of markup

cyclicality; and which we treat henceforth as our baseline sample.

For the first sample, which covers the period 2009-2019, we keep firms with more than two em-

ployees and with positive value added, revenue, materials, services expenditure, wage bill, cap-

ital, and price. We winsorize these variables by sector at the 1% level. We end up with 220, 733

firm-year observations across 11 years and 22 sectors at the 2-digit level. Despite the smaller

number of observations and shorter time-span, the estimation sample represents about 38%

27The variable ACHAMPR is defined as “everything that the firm purchases in order to be transformed,” and
ACHAMAR is defined as “everything that the firm purchases to be sold as is.” VARSTMP and VARSTMA are defined
analogously for changes in stocks.

28The EAP survey is used by EUROSTAT to produce statistics such as Structural Business Statistics (SBS) and
Production Statistics (PRODCOM). According to INSEE, roughly 35,000 unique firm identifiers are included in this
survey, covering 90% of French industrial production. The 2-digit NACE rev 2 sectors covered by our EAP sample
are 08, 13, 14, 15, 16, 17, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 43 and 46, where the last two are non-
manufacturing sectors (“specialized construction activities” and “wholesale trade, except of motor vehicles and mo-
torcycles” respectively).

29Examples of units of accounts are kilograms, tonnes, or pieces. We define a product as a combination of a unit
of account and product code because firms that use different units of accounts for the same product code might
produce relatively heterogeneous goods.
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of value-added in the baseline sample. For the second sample, which covers the period 1994-

2019, we keep firms with positive value added, revenue, materials, services expenditure, wage

bill, and capital. We further restrict the sample to firms with positive estimated gross markups

(estimated as described below).30 This yields a firm-level panel with 9, 383, 228 observations,

covering 26 years, 22 sectors at the 2-digit level, and 275 sectors at the 5-digit level. Table A1

in Appendix B.1 displays further summary statistics for both the estimation sample (Panel A)

and the baseline sample used to measure markup cyclicality (Panel B). Firms in the estimation

sample are larger than firms in the baseline sample since the EAP survey focuses on large firms.

The average market share across all firms and years is low, at about 0.07%. However, the dis-

tribution of market shares is highly skewed, with the top 0.01% attaining a market share above

38%.

Although this dataset is very rich, it misses some important information that limits the extent

of our analysis. First, we do not use information on imports and exports in the corresponding

sector. Specifically, when we compute market share as the ratio of a firm’s revenue relative to

the sum of all French firms’ revenue in this sector, we do not take into account the sales of

foreign firms in this market. Moreover, when we estimate markups we do not exclude sales to

foreign countries because we do not know the share of expenditures on inputs this is accounted

for by exports.

Second, because firm-level revenues in our dataset are reported at the national level, we do not

have information on revenues at the local level. This limitation is important for non-tradeable

goods, whose markets are most likely local.31 Because our definition of a market is at the na-

tional level, for non-tradable goods we likely underestimate the concentration in the local mar-

ket relevant for the firm.

3.2 Markup estimation

We estimate markups for two purposes. First, we calculate measures of markup cyclicality in

the data, which we compare with markup dynamics implied by our model. Second, when we

calibrate the model, we target the relationship between sectoral markups and HHI.

Our empirical framework to estimate markups in the data is more general than our theoretical

framework described above, where labor was the only factor of production. Specifically, we also

include materials, capital, and services as inputs to production.32 We assume that materials,

M , are chosen statically (i.e. they are not subject to adjustment costs). Following Hall (1988)
30Market shares (defined as the share of firm-level revenues in the corresponding 5-digit sector), sectoral aggre-

gates, and HHIs are calculated prior to restricting the sample.
31See Rossi-Hansberg et al. (2020) for a study of diverging local and national market-concentration trends or

Smith and Ocampo (2025) for the evolution and consequences of market-concentration trends in the US retail sec-
tor.

32We maintain the assumption that firms are price takers in input markets. Morlacco (2019) relaxes this assump-
tion to estimate markdowns on inputs.
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and De Loecker and Warzynski (2012), the first-order condition for M in the cost-minimization

problem by firm i in sector k implies

µkit = θMkit
PkitYkit
PM
kitMkit

, (34)

where PM
kitMkit denotes expenditure on materials by firm i in sector k, PkitYkit is revenues, and

θMkit is the output elasticity with respect to materials. To measure markups at the firm level, we

require the ratio of material expenditures to revenues — which is available for all firms in our

baseline sample — and the output elasticity with respect to materials.

To estimate output elasticities, we assume a flexible translog production function with the four

inputs described previously. All firms in the same 2-digit sector share the same production-

function parameters and — constrained by the availability of 2-digit-level price indices for in-

termediate inputs — inputs are homogeneous across firms within sector. The output elasticity

with respect to materials of firm i in market k at time t is equal to θMkit = βm+2βmmmkit+βmllkit+

βmookit+βmkkkit where the βxy are the parameter of the production functions and mkit, lkit, okit

and kkit are respectively the firm-level log materials, labor, service and capital usage. Note that

output elasticities differ across firms within 2-digit sectors even if these firms have the same

production function parameters β.

We estimate the parameters in the production function implementing a two-stage iterative

generalized method of moments (GMM) following De Ridder et al. (2024) which builds on Ol-

ley and Pakes (1996), Levinsohn and Petrin (2003), and Ackerberg et al. (2007, 2015). Here we

provide an overview of our approach, and in Appendix B.2 we provide additional details. The

first stage of this method controls for unobserved productivity by using conditional demand of

material input. As discussed in Doraszelski and Jaumandreu (2019) and De Ridder et al. (2024),

under imperfect competition of the form considered in this paper, this first-stage requires ad-

ditional controls, namely market share and firm-level price. In the second stage, we implement

a dynamic panel estimator using GMM. Importantly, in both stages we use quantity data as our

output measure, thus we can only implement this approach in our estimation sample of firms.

Finally, assuming (i) that all firms in the same 2-digit sector (including those with and with-

out quantity information) share the same production function parameters and (ii) that these

parameters are stable over time, allows us to apply the parameters obtained in the estimation

sample to all FICUS-FARE firm-year observations in the corresponding sectors and compute

output elasticities in the longer and larger baseline sample."

Equipped with output elasticities and material-to-revenue ratios, we calculate markups in the

baseline sample using expression (34). Table A1 provides descriptive statistics of our firm-level

markup estimates. The distribution of markups is quite skewed, with a median of 1.21, a mean

of 1.39 and a top quartile of 1.77.
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Given our use of quantity as a measure of output, our estimates are not subject to biases that

may emerge when revenues are used, as discussed in e.g. Bond et al. (2021), Anderson et al.

(2023) and De Ridder et al. (2024). Nevertheless, in Section 5.4 we provide sensitivity analysis

on the use of quantity, revenue or accounting data to compute markups and measure markup

cyclicality.

3.3 Calibration

We now describe how we parameterize the model to match salient features of the French data.

We first introduce the firm-level productivity stochastic process. We then describe our calibra-

tion strategy, which targets the size and concentration of each of the 275 sectors at the 5-digit

level together with other moments from our data and the literature.

Firm-level productivity process

We assume that firm-level quality shifters, Akit, are fixed over time so that the firm-shifter Vkit

is driven only by productivity shocks.33 Following Carvalho and Grassi (2019), we assume that

firm-level productivity, Zikt, follows the discretized random growth process introduced by Cór-

doba (2008). Specifically, firm productivity in sector k evolves on an evenly spaced log grid,

Φk = {1, φk, (φk)
2, . . . , (φk)

S}, where φk > 1 and S is an integer. A firm’s productivity fol-

lows a Markov chain on this grid with associated transition matrix {P (k)
n,m}n,m∈[|1,S|] such that

P
(k)
n,n = 1−ak−ck, P (k)

n,n−1 = ak, P (k)
n+1,n = ck, P (k)

1,1 = ak+bk, andP
(k)
S,S = bk+ck with 1 > ak, bk, ck > 0

and ak + bk + ck = 1. The three parameters φk, δk, and ck characterize this productivity process

in sector k.

As shown in Córdoba (2008) and Carvalho and Grassi (2019), this process implies Gibrat’s law

for productivity. That is, away from the boundaries, productivity growth is independent of its

current level. Additionally, this process generates a stationary Pareto distribution of produc-

tivity (Gabaix 1999) with a tail index equal to δk = log(ak

ck
)/ log(φk). Note, however, that in our

environment this does not immediately imply that firm size satisfies these properties due to

the finite number of firms within sectors and variable markups.

In Section 6, we consider an exercise where we add aggregate TFP shocks to target the volatility

of annual changes in aggregate output.

33Although our analytic results do not take a stand on the importance of productivity versus quality-shifter firm-
level shocks, in the data we construct sectoral output deflating nominal value-added by industry price indices. The
latter typically do not take into account high-frequency changes in quality shifters. Therefore, for consistency, in the
data we abstract from shocks to quality shifters.
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Table 1: Calibration Targets

Panel A: Economy Wide targets

Moment Source Data Model

Slope of ∆µ−1
t,k on ∆HHIt,k Table 5 -0.37 -0.36

Constant of volatility on market share Table A5 0.27 0.27

Panel B: Sectoral targets

Moment Source Data Model

Number of firms Nk
(∗) Baseline sample 1453 1453

Revenue share (∗) Baseline sample 0.16% 0.16%
HHI (See Fig 1) (∗) Baseline sample 0.115 0.115

NOTE: Rows with (∗) refer to 275 moments (one per 5-digit sector). We report averages across the 275 sectors.

Calibration strategy

We now describe how we assign values to the model’s parameters: the two macro parameters

η and f , the two demand elasticities ε and σ, the number of firms Nk, the demand shifter Ak,

and the productivity parameters φk, δk, and ck for each of our 275 sectors. Table 1 and Figure 1

summarize data targets and model fit, while Table 2 displays parameter values.

We set the relative risk aversion to 1 (log utility) and the Frisch labor-supply elasticity to 1, both

of which are standard values in the business-cycle literature.We assume that in all sectors, firms

compete à la Cournot. We set the within-sector elasticity to ε = 5.34 We calibrate the between

sector elasticity σ to target the slope of the regression in first-differences (over time) of the in-

verse sectoral markup on the HHI (constructed as described in Section 4). In the data, the coef-

ficient of this regression is −0.37, as reported in column (2) of the Table 5 discussed in Section

4. In the model, taking first-differences of equation (8) implies ∆µ−1
tk = −( ε

σ
−1)
ε ∆HHItk. Given

our choice of ε, we set σ = 1.8, which implies a slope of −0.36. The two demand elasticities

σ and ε shape own-cost pass-through rates α̃ki, defined in footnote 18. Our baseline choices

imply an own-cost pass-through rate of 0.63 for large firms (those with a market share of 57%

or higher), which lies within confidence intervals in Amiti et al. (2019) for large Belgian firms.35

34In Appendix F we provide sensitivity analysis for alternative values of ε ranging between 4 and 7while recalibrat-
ing the remaining model parameters. Our quantitative results on markup cyclicality are fairly stable, while aggregate
output volatility is increasing in ε.

35About 360 firm-year observations have a market share above 57%, representing approximatively the top 0.004%
of the market-share distribution. Our model implies pass-through rates that are on the high-end of estimates in
Amiti et al. (2019) for Belgian firms and on the low-end of estimates in Berman et al. (2012) for French exporters, and
is consistent with findings in both papers that pass-through rates are decreasing in firm size. For alternative values
of ε reported in Appendix F, pass-through rates are lower (e.g., 0.55 for large firms when ε = 7) and hence closer to
the point estimates in Amiti et al. (2019).
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Table 2: Baseline Calibration

Panel A: Economy Wide parameters

Parameters Value Description

η 1 relative risk aversion
f 1 Frisch elasticity of labor supply
f0 1 labor disutility parameter
ε 5 substitution across firms
σ 1.8 substitution across sectors

Panel B: Sectoral Parameters

Parameters Value Description

S 70 number of productivity bins per sector
φk 1.091 median firm-level productivity process

ak, ck 0.348, 0.250 median firm-level productivity process
Ak 0.0015 median sectoral preference shifter

We now discuss how we assign parameter values that vary across our 275 sectors to match

salient features of our data in the period 1994-2019. We set the number of firms per sector,

Nk, to the average number of firms in sector k observed in our data. We calibrate the constant

sector-level demand shifter, Ak, to target the average revenue share of each of our 275 sectors

in the data. For each sector k, we choose the tail parameter of the stationary distribution, δk, to

match the average HHI in the data. Figure 1 reports HHI in the data against the model coun-

terpart. The fit is good, as revealed by the fact that all dots lie close to the 45-degree line.36

The grid parameter φk determines the range of values that the HHI can take as we vary δk. We

choose the lowest φk such that this range of values contains the value of the HHI in the data for

this sector.37 Finally, we set the remaining parameter of the productivity process, ck, such that

in each sector the conditional volatility of market-share for a hypothetical infinitesimal firm

is equal to the constant in the regression of market-share volatility on market-share estimated

across all sectors in the data and reported in Table A5.38

In what follows we use the calibrated model as a data-generating process to simulate firm-level,

sector-level, and aggregate-level time series. We use the simulated panels to run the corre-

36Given a guess of δk, we draw 1,000 samples of Nk firm-level productivities from the Pareto distribution char-
acterized by δk. For each of these samples, we solve for firm-level market shares and compute the implied HHI.
We then calculate the median HHI across the 1,000 samples, and iterate over δk until we match the HHI for a given
sector in the data. We repeat this procedure for each of the 275 sectors.

37We choose the number of productivity bins S = 70. Higher values of S have a minor impact on our results.
38For each firm in our baseline sample, we calculate the time-series standard deviation of the firm’s market share

growth rate. Column (1) of Table A5 in the appendix reports a regression of this volatility measure on average market
share and a constant term. In column (2) we report an alternative specification using the standard deviation of the
growth rate of market share in the cross-section, as explained in the notes to Table A5. Both specifications yield a
precisely estimated constant of approximately 0.27.
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Figure 1: Model Fit
NOTE: For each sector, this figure show the HHI in the data (x-axis) against the median HHI computed over 1,000

samples drawn from the baseline calibration (y-axis). The size of each dot is proportional to the sector’s average

revenue share between 1994 and 2019.

sponding regressions that we run on actual data. We also compute aggregate business-cycle

statistics using the simulated aggregate time-series, which we then compare with counterparts

in the data.

4 Inspecting the Mechanism

In this section, we examine in the data some basic implications of our model. We analyze the

relation between firm-level markups, marginal costs, and market shares within sectors, as well

as that between sectoral markups and measures of concentration across sectors. We also quan-

tify the contribution of changes in firm-level markups for sector-level markup changes.

4.1 Firm-level evidence

Hardwired into our model is a key micro-level relationship between markups and concentra-

tion. At the firm-level, and following the discussion in Section 1.2, markups increase with a

firm’s market share. In turn, this immediately gives rise to a notion of markup procyclicality at

the micro-level: a firm’s markup increases whenever its market share increases.

Taking the inverse of equation (5) and applying first differences yields a simple linear relation
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between the firm’s market share and its inverse-markup,

∆µ−1
kit = −

ε
σ − 1

ε
∆skit, (35)

where ∆µ−1
kit is the first-difference of the inverse (gross) markup of firm i in sector k at time t and

∆skit is the first-difference of its market share. This motivates the following simple empirical

specification,

∆µ−1
kit = αt + β∆skit + ϵkit, (36)

where β is the coefficient of interest, which the model predicts to be negative. We allow for year

fixed-effects αt to control for unobserved markup shifters that are common across all firms.

In alternative specifications we further allow for sector-year fixed effects, αkt, thus absorbing

markup variation that is common across all firms in a sector, in a given year. While these fixed

effects are not present in our theoretical model they nevertheless allow us to empirically control

for flexible aggregate and sector-specific markup trends in the data and serve as a robustness

check.

We start by inspecting these firm-level relations in the French data. We have estimates of firm-

level markups over the period 1994-2019, as described in the previous section. We calculate

firm-level market shares as the ratio of firm-level revenues to total revenues in the correspond-

ing 5-digit sector. Taking first-differences yields time series for ∆µkit and ∆skit for 955,657

unique firms over the period 1995-2019.

Table 3: Inverse Markup and Market Share

(1) (2) (3)

Dependent Variable: ∆µ−1
kit

∆skit -0.268 -0.268 -0.293
(0.092) (0.093) (0.099)

Year FE N Y N
Sector × Year FE N N Y

Observations 8,051,767 8,051,767 8,051,767

NOTE: ∆µ−1
kit is the first difference of the inverse of firm i sector k gross markup between t and t− 1, and ∆skit gives

the first difference of market share of firm i in sector k. Columns (1)-(3) report baseline empirical estimates for the
FICUS-FARE (1995-2019) data. Column (1) reports pooled estimates while columns (2) and (3) report estimates that
further control for year or sector×year fixed effects, respectively. Sector-year fixed effects are defined at the 5-digit
NAF sector classification. Standard errors (in parentheses) are two-way clustered at the firm and year level. ∆µ−1

kit is
winsorized at the 3% level.

Table 3 displays our estimates and the associated two-way (at firm and year level) cluster-robust

standard errors. Column (1) displays the firm-level relation in first-differences, obtained by

pooling all firm-level data (across sectors and years) for a total of over 8 million observations.

29



This yields a negative and statistically significant coefficient, as theory predicts. Further, the

empirical estimates remain stable and significant when additionally controlling for year (col-

umn 2) and sector-year (column 3) fixed effects. Finally, as a further robustness check, in Ta-

ble A6 of Appendix E.2 we report estimates for an alternative specification that regresses firm

markups on firm market shares in levels, allowing for firm fixed effects. The estimates are again

similar to those in first-differences in columns (1) and (2) of Table 3.

The data is therefore consistent with changes in a firm’s market share acting as a proximate

driver of its markup dynamics, as predicted by theory. Notice however that, ultimately, in the

model a firm’s market share and markup are jointly determined in equilibrium by exogenous

firm-level technology (and/or quality) shifters. All else constant, a decrease in firm’s marginal

cost relative to that of its competitors will increase its competitiveness in the product market

and, hence, its market share (and therefore its markup, as above). We now turn to assessing this

relation in the data.

To do so, recall from Section 3.2 that, for the estimation sample, we can obtain both firm-level

price data, Pkit, and markup estimates, µkit. Given this, for firms in this smaller estimation

sample we can exploit the relation Pkit/µkit = mckit to back out an empirical proxy of firm-level

marginal costs. We can thus inspect the model-implied predictions regarding marginal costs,

market shares and markups, albeit in a significantly smaller sample. Table 4 reports empirical

estimates of simple OLS regressions of firm-level market share and markup growth rates on the

growth rates of our firm-level marginal cost proxy.

Table 4: Markups, Market Shares and Marginal Costs

(1) (2) (3) (4) (5) (6)

Dependent Variable: ∆ log skit ∆ logµkit

∆ logmcit -0.022 -0.022 -0.023 -0.091 -0.091 -0.096
(0.003) (0.003) (0.003) (0.008) (0.009) (0.009)

Year FE N Y N N Y N
Sector × Year FE N N Y N N Y

Observations 178,368 178,368 178,368 178,368 178,368 178,368

NOTE: ∆log µkit is the first-difference of (log) gross markup of firm i sector k at time t, ∆log skit is the first-difference
of (log) market share, and ∆logmcit is the first-difference of (log) marginal cost when the latter is defined as the
difference between (log) price and (log) markup of firm i in sector k at time t. Columns (1)-(6) report empirical
estimates for the estimation sample FARE (2009-2019) data. Columns (1) and (4) report pooled estimates while
columns (2), (3), (5) and (6) report estimates that further control for year or sector×year fixed effects. Sector-year
fixed effects are defined at the 5-digit NAF sector classification level. Standard errors (in parentheses) are two-way
clustered at the firm and year level. ∆logµkit and ∆logmcit are winsorized at the 3% level.

Starting with the simple bivariate relation between marginal cost growth and market share

growth, our estimates in column (1) — where we pool data across all sectors and years — im-

ply that a one percent year-on-year increase in firm-level marginal costs is associated with a
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small but significant 0.02 percent decrease of a firm’s market share growth. This estimate is

robust to additionally controlling for average economy-wide marginal cost dynamics (i.e. the

year fixed effects specification in column 2) or the average marginal cost growth across com-

petitors in a given firm’s sector (i.e. the sector-year fixed effects specification in column 3). The

second panel of Table 4 completes the argument by inspecting the relation between firm-level

marginal cost growth and firm-level markups. Again, we observe that year-on-year increases in

marginal costs result, as our model with incomplete pass-through predicts, in lower markups

both unconditionally (in column 4) and when conditioning on year or sector-year fixed effects

in columns (5) and (6), respectively. Finally, in Tables A7 and A8 of Appendix E.2 we verify that

these empirical estimates are robust to considering an alternative specification in levels (rather

than growth rates) with firm fixed-effects.

The negative correlation between markups and marginal cost reported in Table 4 may be spu-

rious if markups are subject to measurement error, since marginal costs are measured as the

ratio of prices to markups.39 To address this concern, in Appendix E.3 we construct a proxy for

marginal cost based on energy prices and a firm’s reliance on energy as an intermediate input.

Following Ganapati et al. (2020), the rationale for this proxy is that energy price changes are

exogenous to the firm but are nevertheless relevant for the evolution of a firm’s marginal cost,

depending on a firm’s energy intensity. Using this proxy as an instrument for marginal cost,

Table A10 confirms that higher marginal cost is associated both with lower markup and lower

market share, with larger point estimates than in our OLS specification.

Taken together, we conclude that our data is consistent with the basic qualitative firm-level

predictions of our model.

4.2 Sector-level evidence

As discussed in Section 1.3, equilibrium aggregation of firm-level outcomes yields additional

predictions at the sector-level. First, note that, by the same logic as above, taking the inverse

of equation (8) and then first-differences yields the following relation between inverse sectoral

markup and a sector’s HHI:

∆µ−1
kt = −

ε
σ − 1

ε
∆HHIkt, (37)

where∆µ−1
kt is the first-difference of the inverse (gross) markup of sector k at time t and∆HHIkt

is the first-difference of its HHI. This yields a sector-level counterpart to equation (35) where

now inverse sectoral markups comove linearly with sectoral concentration. To assess this rela-

39Unlike this specification, other regressions in the paper include markups in the left hand side — rather than as
an independent variable — so measurement-error bias is less of a concern.
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tionship in the data, we consider the following empirical specification:

∆µ−1
kt = αt + β∆HHIkt + ϵkt, (38)

where β is the coefficient of interest. We allow for year fixed effects αt and additionally consider

robustness to the inclusion of broad 2-digit sector-year fixed effects. Finally, in Appendix E.2,

we report estimates based on a levels specification and sector-level fixed effects.

To construct sectoral markups in the data for our 275 narrowly defined 5-digit sectors, we aggre-

gate firm-level markups to their sector-level counterparts by taking an harmonic market-share

weighted average of firm-level markups — as indicated by the model equation (7). For each

5-digit sector, we construct the HHI by summing-up the square of firm-level market shares. We

then take first-differences across time periods of both the sector-level markup and HHI series.

This results in a balanced panel of 275 sectors at the 5-digit level across 25 years for a total of

6,875 observations.

Table 5: Sector Inverse Markup and Sector HHI

(1) (2) (3)

Dependent Variable: ∆µ−1
kt

∆HHIkt -0.374 -0.370 -0.378
(0.177) (0.178) (0.180)

Year FE N Y N
Sector(2D)×Year FE N N Y

Number of Sectors 275 275 275
Observations 6,875 6,875 6,875

NOTE: ∆µ−1
kt is the first difference of sector k (inverse) markup in year t, ∆HHIkt is the first difference of HHI in

sector k. Columns (1)-(3) report empirical estimates for the FICUS-FARE (1995-2019) data, aggregated to the 5-
digit NAF sector level. Column (1) reports pooled estimates while columns (2) and (3) report estimates that further
control for year or broad 2-digit-sector×year fixed effects, respectively. Standard errors (in parentheses) are two-way
clustered at the sector and year level. Underlying firm-level inverse markups are winsorized at 3%.

Column (1) of Table 5 displays estimates of a pooled regression across all sectors and years. Our

estimates indicate a negative and significant relation between the change in concentration and

the change in the inverse of sector markups. The estimates remain stable when additionally

considering year or broader 2-digit sector-year fixed effects in columns (2) and (3). The point

estimate is about −0.37 which, recall, is the target in our calibration. Table A9 in Appendix E.2

reports alternative specifications in levels rather than growth rates.

Note that our model additionally imposes cross-equation restrictions. Comparing equations

(35) and (37), the slope coefficients of these two relations — that is, the slope of the inverse

of firm markup on market share and the slope of the inverse sector markup on sector HHI —

should coincide. Comparing point estimates across Tables 3 and 5 suggests that the implied
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slopes are indeed similar: focusing on the more demanding sector-year fixed effects specifica-

tions, we obtain slopes of −0.293 and −0.378, respectively, with both estimates falling within

(less than) a one standard-error of each other.

Finally, recall that in our model, changes in sectoral markups reflect two forces. First, for given

firm market shares, the evolution of endogenous firm-level markups may lead to changes in

aggregated, sector-level markups. Second, for given heterogeneous firm-level markups, equi-

librium reallocation of market shares also impact sector markup dynamics. Specifically, note

that following equation (7), the change in sectoral markups between two time periods can be

written as

∆µ−1
kt =

Nk∑
i=1

∆µ−1
kit skit +

Nk∑
i=1

∆skit µ
−1
kit,

where ∆ denotes the year-on-year difference and bars denote averages over two consecutive

years. This yields a standard within-between decomposition of sectoral markup changes. The

first term on the right-hand-side gives the within term, measuring the change in (inverse) sec-

toral markup due to changes in firm-level markups, evaluated at the average market share of

each firm. The second term on the right-hand-side is the between or reallocation term: it mea-

sures the change in the (inverse) sectoral markup due to the changes in firm market share,

evaluated at a firm’s average (inverse) markup. As discussed in Section 2.2 and shown in Ap-

pendix A.1, in the model under Cournot competition the within and between terms are equal

to each other in every sector. From this result, it follows that, under Cournot, the contribution

of the within and between/reallocation terms are each predicted to be equal to 50%.

Given time series of firm-level markups and market shares in the data, the within-between de-

composition above can be readily computed. To do this, for each sector we regress the within

term over time on changes in sector-level markup. The coefficient of this regression is the con-

tribution of the within term to the evolution of sector-level markups.40 We find that for the

median sector in the French data the within term accounts for 59% of the changes in sector

markups, close to the model prediction 50%. While there is heterogeneity in the data, for half

of the sectors in France the contribution of the within term lies between 34% and 81%. Over-

all, taking firm and sector evidence together, the data is consistent with key predictions of the

model.

5 Model Meets Data: Reduced-Form Varieties of Markup Cyclicality

Our theoretical framework yields a simple relation between markups and size: the level of a

firm’s markup is determined by its market share within a sector. In turn, both markups and

40In the data, the reallocation term (defined as the difference between the change in (inverse) sectoral markup
and the within term) captures not only changes in market share across continuing firms but also churn as some
firms enter and exit the market each year.
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market shares are driven by firm-level marginal cost shifters. The aggregation of within-firm

endogenous markup changes and reallocation of market shares across firms determines sec-

toral markups and sectoral concentration, yielding a linear relation between a sector’s (inverse)

markup and its concentration. As we have seen, the data broadly supports these model-implied

relations.

By contrast, a large applied literature investigates different definitions of “markup cyclicality.”

The evidence is mixed on whether markups are procyclical or countercyclical. In this section,

we argue that these conflicting empirical results can be at least partly ascribed to the alterna-

tive reduced-form exercises and definitions of markup cyclicality being pursued. We show that

our model with firm-level shocks only can go a long away in accounting for these seemingly

conflicting reduced-form relations in the data.

5.1 Firm-level markup cyclicality with sector output

We start by analyzing a firm-level notion of reduced-form markup cyclicality and ask how do

firm markups covary with the respective sector-level output.

Before going to the data, recall that our setting is a granular one in which extensive within-

sector heterogeneity in the firm-size distribution enables large firm dynamics to lead the sec-

toral business cycle. In particular, in our setting with idiosyncratic firm-level shocks — and

if pass-through rates do not fall too strongly with market shares — sector-output fluctuations

are necessarily led by shocks to very large firms. To make matters concrete, consider a reduc-

tion in marginal cost for a large market-share firm. Given the granular nature of the economy,

the corresponding sector output will typically increase (see equation 26). In addition, the large

shocked firm will increase its market share and markup. This implies, as indicated in Proposi-

tion 4, that markups of large firms should comove positively with sector output.

By the same token, the average (small) firm in a given sector loses market share to the very

largest firms: if sector-level output expansions are led by large firms, the latter will increase

their market share whereas the average firm loses competitiveness - as evaluated by its mar-

ket share within the sector. Again, due to the markup - market share relation in our setting,

this implies the average firm-markup is expected to comove negatively with sector output, as

summarized by Proposition 4.

To evaluate this implication of the model, we implement the following reduced-form regres-

sion, both in the data and in our model-simulated data:

log(µkit) = αi + γt + β1 log Ykt + β2 log Yk,t × skit + ϵit, (39)

where log(µkit) is firm i sector k (log) gross markup in year t, log Ykt is sector k’s (log) value-
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added in year t and skit is firm-level market share for firm i in sector k at year t.41 Given the

specification in log-levels, αi is a firm fixed effect, which controls for time-invariant firm-level

unobservables determining the average level of a firm’s markup, while γt is a year fixed effect.42

In this specification, β1 captures the average correlation between firm markups and their re-

spective sector output, and coefficient β2, in the interaction term, captures heterogeneity in

this relation.43 For robustness, we additionally consider a specification in first differences of

(log) firm markups, ∆log(µkit), and (log) sectoral value added, ∆ log Ykt and no firm-level fixed

effects. Finally, in Appendix E.4 we consider alternative measures of sector output.

Table 6: Firm Markup and Sector Output

(1) (2) (3) (4)
Data Data Model Model

Dependent variable: log(µkit) ∆log(µkit) log(µkit) ∆log(µkit)

Ykt -0.073 -0.001
(0.008)

log Ykt ∗ skit 0.574 0.265
(0.044)

∆ log Ykt -0.024 -0.001
(0.009)

∆ log Ykt ∗ skit 0.280 0.247
(0.040)

Firm FE Y N Y N
Year FE Y N Y N

Number of Observations 9,039,476 8,051,767 - -

NOTE: µkit is firm i sector k gross markup in year t, skit gives the market share of firm i in sector k, year t and log Ykt

sector k’s (log) value-added in year t. ∆log(µkit) is the first-difference of (log) gross markup in year t for firm i sector
k, skit gives the market share of firm i in sector k, year t and ∆log Ykt is the first-difference of sector k (log) value-
added in year t. Columns (1) and (2) report empirical estimates for the FICUS-FARE (1995-2019) data. Standard er-
rors are two-way clustered at the sector×year level. Columns (3) and (4) report estimates based on model-simulated
data. Log and first-difference of log markup are winsorized at the 3% level.

Before proceeding, note that Hong (2017) estimates a similar version of this regression with

aggregate output Yt in place of sectoral output Ykt, using data for four large European countries.

For these data, Hong (2017) obtains a negative β1 and a positive β2 estimate, concluding that

(i) in the data “markups are countercyclical” and (ii) that there is “substantial heterogeneity

in markup cyclicality across firms, with small firms having significantly more countercyclical

41To obtain sector value-added, we sum firm-level nominal value-added to the NAF 5-digit level and deflate using
EU-KLEMS sectoral price deflators.

42We drop the year 1994 to have the same yearly coverage as in Section 4. For this reason, the number of obser-
vations is lower than what is reported in Table A1. Including the year 1994 gives very similar results.

43According to our model, given the parameters ε and σ, the market share suffices to determine the markup
(equation 5). For this reason, we estimate equation (39) without further controls.
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markups than large firms.”44

Columns (1) and (2) of Table 6 summarize the estimates of the reduced-form regression (39)

on our French firm-level data, in both levels (with firm fixed effects) and first differences of

logged variables. In both cases, point estimates β1 are negative and significant : the markup

of the average firm is “countercyclical” with respect to own-sector output. Although the point

estimates vary across empirical specifications, the average firm’s markup behavior qualitatively

aligns with our model’s predictions. Further, there is substantial heterogeneity in markup cycli-

cality across firms. In particular, the estimates for the interaction term — in both specifications

— imply that markups of firms with market shares roughly above 10% (in the top 0.1% of the

market share distribution) are procyclical with respect to sectoral output. However, the vast

majority of firms have a countercyclical markup with sectoral output since the average firm

has a very low market share (roughly 0.07%).45

Columns (3) and (4) of Table 6 implement these reduced-form regressions on model-simulated

data for 399,520 firms distributed across 275 sectors at the 5-digit level.46 The model is able to

reproduce the qualitative patterns observed in the data. In line with Proposition 4, markups are

countercyclical with respect to own-sector output for the average firm and procyclical for large

firms. Furthermore, point estimates for the implied large-firm procyclicality are of the same

order of magnitude in the model and the data, and particularly close for the first-differences

specification. In Appendix E.4, we show that these results are robust to alternative definitions

of sectoral output dynamics, by considering log-deviations of sector real value added from its

trend (defined by either a Hodrick-Prescott or Hamilton 2018 filters).

As discussed above, underlying the prediction of the model for heterogeneous cyclicality of

firm-level markups is the fact that, in our granular environment, large firms’ market shares are

correlated positively with sector output whereas small firms’ market shares are countercyclical.

To assess this mechanism in the data, we estimate the following regression:

log(skit) = αi + γt + β log Ykt + ϵkit,

where log(skit) is the (log of) market share of firm i in sector k, log Yk,t is the (log of) sector k real

value-added, αi is a firm-level fixed effect, and γt is a year fixed effect. We additionally consider

a first-difference specification (without firm fixed effects). In either specification, β measures

the relation between market share and sector value-added. To assess the predicted heteroge-

neous behavior of firm-level market shares with respect to sector output, we implement this

44When we consider regression (39) using aggregate output, Yt, rather than sectoral output, Ykt, we find the same
qualitative results as in Hong (2017).

45We also consider an alternative specification where sector value-added is interacted with an indicator for
market-shares over 50%. We find a coefficient of 0.240 (0.044) on the interaction term for the log-level specifica-
tion and of 0.026 (0.013) for the first-difference specification.

46The number of firms is smaller in the simulation than in the data as our model abstracts from entry and exit
and targets the yearly average number of firms in the economy over our period.
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regression (i) on the whole sample of firms, (ii) on the subsample of firms whose average mar-

ket share is lower than 50%, and (iii) on the subsample of firms whose average market share is

above 50%.

Columns (1) and (4) in Table 7 report estimates of β on the French data and on model-simulated

data. Both in the data and in the model — and for both level and first-difference specifications

— the average firm’s market share is countercyclical. Columns (2) and (5) report estimates for

the subsample of firms whose market share is lower than 50%. Estimates of β are negative

both in the data and in the model. Columns (3) and (6) report estimates for the subsample of

firms whose market share is above 50%: consistently with our argument, estimates of β are now

positive, both in the data and in the model, although the magnitude is smaller in the data.47 In

Appendix E.4 we confirm that these findings are robust to alternative detrending techniques for

sectoral output dynamics. Taken together, these results provide support for a key implication

of our granular model with firm-level shocks. The average firm’s market share and markup are

countercyclical with respect to its own sector value-added, whereas large firms’ market share

and markups are procyclical.

Table 7: Firm Market Share and Sector Output

(1) (2) (3) (4) (5) (6)
Data Data Data Model Model Model

(all data) (s̄ki < 0.50) (s̄ki > 0.50) (all data) (s̄ki < 0.50) (s̄ki > 0.50)

Dependent variable: log skit

log Ykt -0.594 -0.595 0.144 -2.613 -2.621 0.535
(0.009) (0.009) (0.060)

Firm FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
Number of Obs. 9,039,476 9,039,036 440 - - -

Dependent variable: ∆log skit

∆ log Ykt -0.488 -0.488 0.091 -2.585 -2.591 0.274
(0.018) (0.018) (0.037)

Firm FE N N N N N N
Year FE N N N N N N
Number of Obs. 8,251,767 8,251,340 427 - - -

NOTE: skit gives the market share of firm i in sector k, year t, and log Ykt is the deviation of sector k (log) value-
added in year t from its mean. ∆logskit gives the first-difference of (log) market share of firm i in sector k, year t,
and ∆log Ykt is the first-difference of sector k (log) value-added in year t. s̄ki is the average market share of firm i
in market k. Column (1-3) reports empirical estimates for the FICUS-FARE (1995-2019) data. Sectors are defined
at the 5-digit NAF sector classification level. First-difference in log market shares are winsorized at the 3% level.
Standard errors in the data are two-way clustered at the sector×year level. Column (4-6) reports estimates based on
model-simulated data.

47In our model, changes in sectoral output are driven by independent firm-level shocks. Adding sector-level
productivity or demand shifters that affect all firms symmetrically would reduce the estimate of β, bringing it more
in line with our empirical findings.
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5.2 Sector-level markup cyclicality with sector output

We now explore sector-level notions of markup cyclicality. We first ask how sector markups

covary with own-sector output. Recall that in our granular setting, sectoral business cycles are

driven by large firm dynamics, and that shocks to large firms induce changes in both sector-

level output and markups. According to Proposition 3, we should expect a positive correlation

between sector markup and sector output.

To assess this relationship in the model and in the data, we follow Nekarda and Ramey (2013)

and consider the following sector-level specification:

∆ logµkt = αk + γt + β∆ log Ykt + ϵkt, (40)

where ∆ logµkt denotes the first-difference of sector k’s (log) markup, and ∆ log Ykt denotes

the first difference of sector k’s (log) real value-added. Sector-level markups are aggregated

from firm-level estimates according to a harmonic weighted average, as indicated by the model

equation (7).48 We measure sector value-added in the data as in the previous section. We follow

Nekarda and Ramey (2013) and include sector and year fixed effects to control for possibly het-

erogeneous trends in sector level growth rates. For robustness, we also consider an alternative

specification where we use sectoral variables in log deviations from trend (rather than first dif-

ferences) where the trend is estimated following Hamilton (2018). Finally, in Appendix E.5 we

consider additional fixed-effect specifications for variables in levels and alternative detrending

procedures.

Nekarda and Ramey (2013) estimate a positive and significant β in US sectoral data using a

similar specification, concluding that “markups are generally procyclical (...) hitting troughs

during recessions and reaching peaks in the middle of expansions.”

Table 8 reports estimates of β in our French data using both first-difference (Column 1) and

trend-deviation specifications (Column 2). Sector markups comove positively and significantly

with sector output, which is consistent with the findings in Nekarda and Ramey (2013) despite

differences regarding the country of analysis, sample period, and the methods deployed to es-

timate markups. Appendix E.5 further confirms the robustness of this correlation to alternative

empirical specifications and detrending procedures.

Columns (3) and (4) in Table 8 report estimates of β in model-simulated data, applying the same

empirical specifications as in the French data. We report the median and standard deviation

of β estimates over 5,000 samples of 25 years each. The model implies a positive correlation

between sector markup and sector output, yielding point estimates that are only slightly lower

than their empirical counterpart.

48Nekarda and Ramey (2013) measure sectoral markup using various measures of the inverse of the labor share
at the sectoral level. We construct sector-level markup from the aggregation of firm-level markup based on equation
(34) with material as a variable input.
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Table 8: Sector Markup and Sector Output

(1) (2) (3) (4)
Data Data Model Model

Dependent variable: ∆ logµkt log µ̂kt ∆ logµkt log µ̂kt

∆ log Ykt 0.160 0.110
(0.040) (0.040)

log Ŷkt 0.139 0.117
(0.057) (0.035)

Sector FE Y Y Y Y
Year FE Y Y Y Y

Number of Sectors 275 275 275 275
Number of Obs. 6,875 6,325 6,875 6,325

NOTE: Regression of sector-level (log) change (columns 1 and 3), and Hamilton (2018) trend deviation of markup
(columns 2 and 4), ∆log µkt and log µ̂kt respectively on sector value-added ∆log Ykt and log Ŷkt respectively. Col-
umn (1-2) reports empirical estimates for the FICUS-FARE (1995-2019) data, and standard errors (in parentheses)
are clustered at the sector level. Sectors are defined at the 5-digit NAF sector classification level. To construct sector-
level markup the underlying firm-level inverse markups are winsorized at 3%. Columns (3-4) report estimates based
on model-simulated data. The point estimates for these columns give the median coefficient obtained from running
the reduced-form regression over 5,000 simulated samples, each of the same length (25 years) as the French data.
The standard errors (in parentheses) are computed over the same simulated samples.

To further understand the previous result, recall that sector-level markups in our model are

linked to sector-level concentration as measured by the HHI, a relationship we explored em-

pirically in Section 4.2. Therefore, underlying the cyclicality of sector-level markup is the cycli-

cality of the sectoral HHI. In our granular environment, in a typical sectoral expansion a few

large firms expand by increasing their market share while smaller firms lose market share, re-

sulting in higher concentration. To assess this mechanism in the data, we estimate a similar

specification to equation (40), with sectoral HHI rather than sectoral markup on the left hand

side:

∆ logHHIkt = αk + γt + β∆ log Ykt + ϵkt.

Here, ∆ logHHIkt is the first-difference of sector k’s (log) HHI and ∆ log Ykt denotes the first

difference of sector k’s (log) output. We include sector and year fixed effect as in the markup

cyclicality specification, equation (40). As above, we consider an alternative specification

where we use log deviations from trend computed as in Hamilton (2018) and present further

robustness exercises in Appendix E.5.

Columns (1) and (2) in Table 9 report estimates of β in our French data for both first-difference

and trend-deviation specifications. Sector concentration comoves positively and significantly

with sector output. We next apply the same empirical specification to model simulated data,

and we calculate the median and standard deviation of β estimates over 5,000 samples of 25

years each. Columns (3) and (4) in Table 9 show positive and significant estimates of β that are
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Table 9: Sector Concentration and Sector Output

(1) (2) (3) (4)
Data Data Model Model

Dependent variable: ∆ logHHIkt log ĤHIkt ∆ logHHIkt log ĤHIkt

∆ log Ykt 0.332 0.533
(0.067) (0.235)

log Ŷkt 0.281 0.726
(0.049) (0.288)

Sector FE Y Y Y Y
Year FE Y Y Y Y

Number of Sectors 275 275 275 275
Number of Obs. 6,875 6,325 6,875 6,325

NOTE: Regression of sector-level (log) change (columns 1 and 3), and Hamilton (2018) trend deviation of HHI
(columns 2 and 4) ∆logHHIkt and log ĤHIkt respectively on sector value-added ∆log Ykt and log Ŷkt respectively.
Column (1-2) reports empirical estimates for the FICUS-FARE (1995-2019) data, and standard errors (in parenthe-
ses) are clustered at the sector level. Sectors are defined at the 5-digit NAF sector classification level. Columns (3-4)
report estimates based on model-simulated data. The point estimates for these columns give the median coeffi-
cient obtained from running the reduced-form regression over 5,000 simulated samples, each of the same length (25
years) as the French data. The standard errors (in parentheses) are computed over the same simulated samples.

comparable in magnitude to those in the data. Table A14 in Appendix E.5 confirms the robust-

ness of this correlation to alternative empirical specifications and detrending procedures.

5.3 Sector-level markup cyclicality with aggregate output

The work by Bils et al. (2018) explores yet another reduced-form notion of markup cyclicality.

Unlike the previous specification which relates changes in sectoral markups and changes in

sectoral output, Bils et al. (2018) measure cyclical comovement between sectoral markup and

aggregate real GDP. More recently, Anderson et al. (2023) explore a similar notion of cyclicality

when assessing markup dynamics in retail sectors.

To understand this form of comovement in the context of our model, note that sector markups

only react to within-sector firm shocks. Over long samples, under the conditions of Proposi-

tion 5, the model implies (i) positive comovement of a sector’s markup with aggregate GDP and

(ii) that this comovement is nevertheless weaker than that between a sector’s markup and its

output (see footnote 25). Over a given cyclical episode — or more generally, in small samples

— the model prediction is ambiguous. A positive comovement is expected if the fluctuation

in aggregate economic activity is driven by large firms in the same sector. However, aggregate

output movements also reflect shocks hitting other sectors in the economy. If a sector comoves

negatively with aggregate output, a negative correlation of that sector’s markup with aggre-

gate output will obtain. Overall, we should expect a weaker relationship between the average
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sector’s markup and aggregate GDP fluctuations than between sectoral markups and sectoral

output.

To explore this notion of cyclicality, we implement the following regression:

∆ logµkt = αk + β∆ log Yt + ϵkt, (41)

where ∆ logµkt is the first-difference of sector k’s log markup in year t, ∆ log Yt is the first dif-

ference of (log) aggregate value-added in year t, and αk is a sector fixed effect that controls

for sector-specific trends in markups. Sector-level markups are computed as above by tak-

ing a weighted harmonic mean of firm-level markups and aggregate value-added is computed

by summing firm-level value-added deflated by the respective EU-KLEMS sector-level defla-

tor. For robustness, we again consider specifications in log deviations from a Hamilton (2018)

trend rather than growth rates. In Appendix E.5 we consider an alternative HP-filter detrending

procedure.

Bils et al. (2018) consider a version of this regression based on US data.49 They conclude that

“the price markup is estimated to be highly countercyclical” with the possible exception of ser-

vice industries, for which they find evidence favoring procyclicality. In the same vein, Anderson

et al. (2023) study the cyclicality of markup growth of one particular sector — US retail — with

respect to GDP growth. They report a positive but statistically insignificant relation, leading

them to conclude that markups in retail are “roughly acyclical or mildly procyclical.”

Columns (1) and (2) of Table 10 summarize our estimates based on French data. While the point

estimates are negative, the standard errors are large. The coefficient in column (1) is marginally

significant (t-stat of 2.06) while that in column (2) is insignificant (t-stat of 1.53). As shown in

Table A15 of Appendix E.5 and in Table A3 of Appendix C, both the sign and significance of this

reduced-form relation are sensitive to the specific detrending choice, sample definition, and

the measure of markup used.

We now explore the relation between sector-specific markups and aggregate output implied by

our model. Table 10 present median estimates (along with their respective standard errors) of

β over 5,000 samples of 25 year length. For the baseline calibration, reported in columns (3)

and (4), our model implies a positive point estimate. However, the model simulations point to

considerable variation in this relation across small samples, with a point estimate that is not

statistically different from zero.

As we will discuss in Section 6, our model with only idiosyncratic productivity shocks under-

states aggregate output volatility. In order to match the observed volatility of aggregate output,

we consider an extension with aggregate productivity shocks. Firm-level productivity is given

49Bils et al. (2018) measure markup using intermediate input share computed from sector level data from KLEMS.
Here, we construct sector-level markup by the aggregation of firm-level markup based on equation (7) and we use
material as a variable input to estimate firm-level markup using equation (34).

41



by Z̃t×Zikt, where Z̃t is normally distributed and independent across periods with volatility set

to match the volatility of aggregate output in the data.50 For this alternative parameterization,

reported in columns (5) and (6), our model implies a point estimate that is roughly equal to

zero. Of the 5,000 samples, about 20 to 30% (depending on how we filter the model-generated

data) display sectoral markups that are countercyclical with respect to aggregate output. In-

tuitively, aggregate productivity shocks enhance aggregate output volatility but do not affect

the relative firm-level productivity and therefore do not affect the market-share and markup

distributions. It follows that aggregate shocks do not affect sector-level markups. Point esti-

mates with aggregate shocks are therefore smaller than without aggregate productivity shocks

and closer to its empirical counterpart. We conclude that the model can generate a weaker co-

movement between sectoral markups and aggregate output in comparison to the more robust

positive relation between sectoral markups and sectoral output.

Table 10: Sector Markup and Aggregate Output

(1) (2) (3) (4) (5) (6)
Data Model Model

without Aggr. Shocks with Aggr. Shocks
Dependent variable: ∆ logµkt log µ̂kt ∆ logµkt log µ̂kt ∆ logµkt log µ̂kt

∆ log Yt -0.239 0.165 0.008
(0.116) (0.101) (0.042)

log Ŷt -0.145 0.169 0.017
(0.095) (0.119) (0.044)

Share negative coefficients - - 0.02 0.02 0.29 0.21

Sector FE Y Y Y Y Y Y
Number of Sectors 275 275 275 275 275 275
Number of Obs. 6,875 6,325 6,875 6,325 6,875 6,325

NOTE: Regression of sector k’s markup in year t in first-differences (∆logµkt, in columns 1, 3 and 5) and Hamil-

ton (2018) trend deviation (log µ̂kt, in columns 2, 4 and 6) on (log) aggregate real value-added in year t in either

first-differences or Hamilton (2018) trend deviation ( ∆log Yt and log Ŷt, resp.). Columns (1) and (2) report empiri-

cal estimates for the FICUS-FARE (1995-2019) data. Regressions are weighted by average sectoral value-added. To

construct sector-level markup the underlying firm-level inverse markups are winsorized at 3%. Standard errors (in

parentheses) are clustered at the sector level. Columns (3) and (4) report estimates based on model-simulated data.

Point estimates for this column give the median coefficient obtained from running the reduced-form regression over

5,000 simulated samples, each of the same length (25 years) as the French data. The standard errors (in parentheses)

are computed over the same simulated samples. Columns (5) and (6) report estimates based on model-simulated

data with aggregate TFP shocks. Point estimates for this column are computed as for columns (3) and (4). The

volatility of the serially uncorrelated aggregate TFP shocks is calibrated to match the aggregate volatility of aggre-

gate output (either measured as a deviation from trend or a log first-difference) in France. The line “Share negative

coefficients” gives the share of simulation with negative estimated coefficients in regression on the model-based

simulations.

50We set the standard deviation of log Z̃t to 2.20% (resp. 2.04%) for the specification in first-differences (resp. in
deviation from trend)
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5.4 Robustness of empirical results to alternative samples and markup measures

As explained in Section 3.1, our measure of markups is constructed by combining (i) estimates

of the production function at the 2-digit level on a restricted sample of firms with revenue and

quantity data, referred to as the estimation sample, and (ii) expenditure shares on materials

from a larger sample of firms, referred to as the baseline sample. This procedure allows us to

construct firm-level markups for about 9.4 million firm-year observations from 1994 to 2019. In

this section, we discuss the sensitivity of our empirical results to using the restricted estimation

sample or alternative measures of markups. We provide additional information and robustness

exercises in Appendix C.

We begin by re-calculating our results in the smaller estimation sample, which contains 220,733

observations over the shorter period 2009-2019. The results are collected in column (7) of Ta-

ble A3 in Appendix C.6 and can be compared with our baseline estimates in column (1). The

qualitative conclusions remain similar, though with reduced statistical significance. This re-

flects both a smaller sample size—fewer time periods and firms—and an underrepresentation

of small firms in the population. By extending the sample of firms beyond those with quantity

data, our baseline sample addresses these two issues.

We next calculate markups using output elasticities estimated using revenue rather than quan-

tity data. Revenue-based markups are more widely used in the literature than quantity-based

markups because revenue data is more readily availability, but are prone to the biases discussed

in e.g. Bond et al. (2021) and De Ridder et al. (2024). Anderson et al. (2023) show sizable differ-

ences in markup levels estimated using quantity or revenues data for a large US and Canadian

retailer. We obtain in our data similar differences in the average level of quantity and revenue-

based markups to those reported in Anderson et al. (2023), as shown in Table A2 of Appendix

B.3. Nevertheless, when we re-estimate our central empirical specifications using revenue-

based markup (see column 5 of Table A3) the results are qualitatively similar to our baseline,

with only a few exceptions: the relation between sector markups and concentration retains

the baseline sign but loses significance, while the relation between sectoral markups and ag-

gregate output gains significance albeit with point estimates that are now closer to zero. The

fact that many of the patterns on markup cyclicality do not change much when using revenue-

or quantity-based markups is consistent with results in De Ridder et al. (2024). While revenue-

based markups levels are biased, De Ridder et al. (2024) provide conditions and quantitative ex-

amples under which they are positively correlated (across firm or/and over time) with quantity-

based markups.

In the same vein, in Appendix C.1 we run our baseline specifications using accounting markups

computed with the Lerner-index, without involving any production function estimation. While

immediate to compute, these accounting-based measures only recover markups if firms oper-

ate a constant-return-to-scale technology and costs are correctly accounted for. The results are
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displayed in column (2) of Table A3. Results are qualitatively similar to our baseline.

Table A3 displays also shows that our empirical results are largely robust to individual pertur-

bations of our benchmark procedure, such as the treatment of outliers, multi-product firms,

and time coverage.

6 Fluctuations in Aggregate Markup and Output

In this final section, we turn our attention to the volatility and cyclicality of aggregate markup

and output fluctuations in the data and in the quantitative model. We first consider our model

with only idiosyncratic firm-level shocks that follow the Markov process introduced above. We

then introduce aggregate productivity shocks to fully account for aggregate output volatility in

our data.

Using our FICUS-FARE data, we construct aggregate markups, µt, as a weighted harmonic

mean of firm-level markups, and aggregate GDP, Yt, as described in Section 5.3. We detrend

these variables using the Hamilton (2018) filter. Using our calibrated model, we simulate 5,000

samples of 25-year firm-level histories. We implement the same procedure to construct de-

trended time-series of model simulated aggregate output and markups. For robustness, we

also consider a first-differences specification. Table 11 presents data- and model-based esti-

mates of the correlation and standard deviation of aggregate output and markups.

We first consider aggregate markup cyclicality. Recall from expression (33) that our model im-

plies a positive comovement between aggregate output and aggregate markups unless larger

sectors have lower markups or, for finite samples, if a particular expansionary episode is driven

by a sector with a sufficiently low markup, in which case negative comovement may obtain.

That is, whereas according to our model we should observe positive comovement over suffi-

ciently long samples, in any given short sample comovement may be absent or negative de-

pending on sectors driving the aggregate fluctuations.

In Table 11, we can see that both in the data and in the model the correlation between ag-

gregate markup and aggregate output is positive. Our model predicts, however, much higher

correlation than that observed in the data: the correlation is, at most, 0.06 in the data and 0.91

(computed as the median correlation across shock realizations) in the model.51

Next, we examine the magnitude of aggregate fluctuations in output and markups implied by

our model. The literature quantifying the granular origin of business cycles (see e.g. Gabaix

2011 and Carvalho and Grassi 2019) has largely abstracted from considerations of oligopolis-

51Our model predicts large variation in the correlation coefficient and in the relative volatility of aggregate
markups and output across small samples, depending on which sectors are driving aggregate dynamics and the
relative levels of their markups. To see this variation at play, Figure A1 in Appendix E plots the histogram of cor-
relation coefficients ρ(∆ logµt,∆log Yt) and relative standard deviations σ(∆ log µt)/σ(∆ log Yt) across our 5,000,
25-year samples.
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Table 11: Aggregate Markup and Aggregate Output

(1) (2) (3)
Data Model Model

without aggr. shocks with aggr. shocks
σx σx/σY ρ(x, Y ) σx σx/σY ρ(x, Y ) σx σx/σY ρ(x, Y )

log Ŷt 3.16 1 1 0.83 1 1 3.16 1 1

log µ̂t 1.27 0.40 0.03 0.30 0.36 0.91 0.30 0.09 0.29

∆ log Yt 3.28 1 1 0.72 1 1 3.28 1 1

∆ logµt 1.63 0.50 0.06 0.26 0.36 0.91 0.26 0.08 0.27

NOTE: The table reports standard deviations, σx, relative standard deviations, σx/σY , and time-series correlations,
ρ(x, Y ), for deviations from trend computed as in Hamilton (2018) of (log) aggregate output log Ŷt and (log) aggregate
markup log µ̂t, and, for log first-difference of aggregate output ∆log Yt and aggregate markup ∆logµt. Column
(1) reports empirical estimates for the FICUS-FARE (1995-2019) data. Column (2) reports the median over 5,000
simulated samples, each of 25 years. Column (3) reports the average over 5,000 simulated samples of 25 years from
a model with aggregate TFP shocks. The volatility of the serially uncorrelated aggregate TFP shocks is calibrated to
match the aggregate volatility of aggregate output (either measured as a deviation from trend or a log first-difference)
in France.

tic competition and incomplete pass-through. Recall from our analytic results in Section 2.3

that incomplete pass-through weakens the response of aggregate output to firm-level shocks

relative to a specification of the model with heterogeneous but constant markups.

Table 11 shows that, for the detrended specification, the standard deviation of aggregate out-

put is 3.16% in our French data and 0.83% in our model (median across samples). That is, the

volatility of aggregate output in our purely granular model is 26% of the volatility in the data (we

obtain very similar results if we calculate volatilities using first-differences). This is only slightly

smaller than the comparable number in Carvalho and Grassi (2019) who report, in their per-

fectly competitive granular environment, a volatility of model GDP relative to (US) data of 30%.

How large are granular movements in aggregate markups? In the data, the relative volatility of

aggregate markup to aggregate output ranges from 40% to 50%, depending on the detrending

method. Our calibrated model generates a relative volatility of 36% (median across samples).

Although our model with firm-level shocks generates non-negligible fluctuations in aggregate

output and markups, it only accounts for a fraction of aggregate fluctuations in the data. More-

over, as we discussed above, the correlation of markups and output is much higher than that

in the data. In what follows we show that if we superimpose on our calibrated model aggregate

productivity shocks — in order to match aggregate output volatility in the data — the procycli-

cality of markups is much lower and closer to the data.
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As described in the previous section, we assume that firm-level productivity is given by Z̃t×Zikt,

where Z̃t is normally distributed and independent across periods. We choose the standard

deviation of Z̃t to match the volatility of aggregate output in the data. Column (3) of Table

11 shows the implied business-cycle moments for the median 25-year sample. As discussed

in Section 1, aggregate shocks do not affect firm market shares and markups, and hence the

volatility of aggregate markups is unchanged relative to the model with only firm-level shocks.

Because movements in output driven by aggregate productivity shocks are uncorrelated with

markups, the correlation between aggregate markup and output falls to 0.27. In 16% of our

25-year samples, aggregate markups are countercyclical.52

Role of changes in firm-level markups for aggregate results The within/between decompo-

sition in Section 4 demonstrates the importance of changes in firm-level markups to account

for changes in sectoral markups in the model and data, as discussed in Section 2. However,

this does not imply that movements in aggregate output and markups would be very different

if firm-level markups were heterogeneous but fixed over time.

To examine this counterfactual, we use the first-order approximation expressions derived in

Section 2. In Appendix A.6, we provide expressions for correlations and volatilities under vari-

able markups versus constant markups, given market shares and markups in the initial equi-

librium. Because in our model the distribution of firms by sector changes every period, we

consider 1,000 independent samples drawn from the equilibrium in our quantitative model.53

Consider first movements in aggregate output. We compare the standard deviation of aggregate

output under variable markups with that under heterogeneous but constant markups, given

the same initial firm-level expenditure shares and markups and assuming the same volatility of

firm-level shocks.54 For the median sample, the standard deviation of aggregate output under

variable markups is 0.87 times that under heterogeneous but constant markups (the 95% con-

fidence interval calculated across samples is 0.82-0.97). As explained in Section 2, incomplete

pass-through (given pass-through rates that are decreasing in size) reduces aggregate output

52We also considered second-moment shocks to firm-level productivity as in Bloom et al. (2018). An increase in
the dispersion of firm-level productivity shocks reallocates market shares toward large firms, increasing the aggre-
gate markup, but also raise aggregate output (Oi-Hartman-Abel effect). That is, in our model second moment shocks
increase the correlation between aggregate markup and output.

53The magnitudes of correlations and ratios of standard deviations based on the first-order approximations are
remarkably close to those in our quantitative non-linear results. For the median sample, the standard deviation
of aggregate markup relative to output is 0.42 (vs. 0.36 in our quantitative non-linear results) and the correlation
between aggregate markup and output is 0.87 (vs. 0.91 in our quantitative non-linear results).

54Market shares of large firms are less volatile under variable markups than under constant markups. One could
compare aggregate volatilities under these two specifications after adjusting the size of firm-level shocks to keep
the same average volatility of market-shares (which, recall, is a target in our baseline calibration). If we match an
unweighted average of these market-share volatilities, our results remain roughly unchanged. If we target a weighted
average of these market-share volatilities, aggregate volatility is slightly higher under variable markups. In all cases,
variable markups have a limited impact on reducing aggregate output volatility.
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volatility in a similar way that a decline in firm concentration does.55

Consider next movements in aggregate markups. For the median sample, their standard devi-

ation under variable markups is 1.08 times that under heterogeneous but constant markups

(the 95% confidence interval is 1.00-1.18). The median volatility of aggregate markups rel-

ative to output is 0.42 under variable markups and 0.34 under heterogeneous but constant

markups. The median correlation between markups and output is 0.87 under variable markups

and 0.92 under constant markups (the 95% confidence interval for the difference in correlations

is [0,0.07]).

Overall, the magnitude and cyclicality of aggregate markups in our model are not substantially

different when we counterfactually fix markups at their initial, heterogeneous level. Of course,

rather than exogenously fixing markups our model provides a unified theory of both markup

(level) heterogeneity across firms and endogenous markup changes which is consistent with a

number of observations about markup changes in the data.

7 Conclusion

In this paper, we examine markup cyclicality through the lens of a simple oligopolistic macroe-

conomic model with rich implications for the behavior of markups at the firm, sector, and ag-

gregate levels. Working with administrative firm data for France, we show the model can repro-

duce qualitatively, and many times quantitatively, an array of markup-related empirical mo-

ments at various levels of disaggregation. Within our framework and measure of markups, we

can reconcile seemingly conflicting variants of “markup-cyclicality” that have been considered

in the literature. Finally, our granular oligopolistic setting produces non-negligible aggregate

fluctuations, both in output and markups.

One obvious route for future work is to superimpose in our model alternative shocks and fric-

tions. Along this line, prime candidates would be to consider price setting and customer-

accumulation frictions (see, e.g., Gilchrist et al. 2017, Hong 2017 or Afrouzi and Caloi 2024),

as well as aggregate monetary and financial shocks. Relatedly, we have focused on static, intra-

temporal markup decisions in which movements in markups are the result of changes in the

shape of the demand curve in response to firm-level shocks. These forces would remain rele-

vant even if one were to extend the model to allow for richer inter-temporal dynamics that re-

55Whereas variable markups reduce the volatility of aggregate output, markup heterogeneity per se contributes to
higher aggregate volatility. By equation (30), markup heterogeneity under constant markups does not affect output
changes with linear disutility of labor (f → ∞). However, with finite labor disutility, reallocation of economic activity
across heterogeneous markup firms is an additional source of output fluctuations, as studied in Baqaee and Farhi
(2019). In our model, the median standard deviation under heterogeneous and constant markups is 1.18 times that
under homogeneous and constant markups (the 95% confidence interval is 1.13-1.22). Combining both results, the
standard deviation under variable and heterogeneous markups is 1.02 times that under homogeneous and constant
markups (the 95% confidence interval is 0.99-1.14). That is, output volatility under variable markups is only slightly
higher than under constant and homogeneous markups.
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sult in more complex dynamic markup strategies (see e.g., Rotemberg and Saloner 1986). Bring-

ing the resulting firm, sector, and aggregate dynamics to data - and comparing them against

the forces in our static benchmark - would then render possible an assessment of the empirical

merits of this more general approach.

Finally, extensions to more realistic and richer product and market structures would allow us

to more accurately map model objects to the increasingly detailed micro data available to re-

searchers. Such extensions include multi-product firms, interlinked through intermediate-

inputs, with some firms competing only locally in spatially segmented (product and factor)

markets and others doing so nationwide and/or internationally.
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A Additional Information on Theoretical Results

A.1 Global between / within decomposition of changes in sectoral markups

The change in the inverse of the sectoral markup between two time periods is, by equation (7),

1

µkt′
− 1

µkt
=

Nk∑
i=1

(
skit′

µkit′
− skit

µkit

)

This change in sectoral markups can be decomposed into a within term (i.e., changes in firm-

level markups evaluated at firms’ expenditure share averaged over both time periods) and a

between term (i.e., changes in expenditure shares evaluated at firm-level markups averaged

over both time periods) as follows:

1

µkt′
− 1

µkt
=

Nk∑
i=1

1

2

[
(skit′ + skit)

(
1

µkit′
− 1

µkit

)
+

(
1

µkit′
+

1

µkit

)
(skit′ − skit)

]
(A1)

Note that if markups are equal across firms (as is the case with σ = ε), then all terms in (A1) are

equal to zero.

It is straightforward to show that, by equation (5) under Cournot competition, the within and

the between terms in (A1) are equal to

1

2

Nk∑
i=1

(skit′ − skit) (skit′ + skit)

(
1

σ
+

1

ε

)
.

Therefore, under Cournot competition, the contribution in changes in sectoral markups of the

between and the within terms is 50% each, irrespective of the values of σ and ε (as long as σ ̸= ε).

If σ is close to ε, firm-level markups are less responsive to shocks (reducing the within term), but

firm-level markups are also less heterogeneous across firms (reducing the between term).



With Bertrand competition, the within/between decomposition is not constant at 50-50.

A.2 Changes in sectoral markups

Substituting equations (15), (16), (18), and

ŝkit = Âkit + (1− ε)
(
P̂kit − P̂kt

)
, (A2)

into equation (20) yields

µ̂kt = µk

Nk∑
i=1

skiαki

(Γki − 1

µki

)
−

∑Nk
i′=1 ski′αki′

(
Γki′−1
µki′

)
∑Nk

i′=1 ski′αki′

 V̂kit. (A3)

Setting Γki = 0 and αki = 1, we obtain the expression for changes in sectoral markups under

constant markups, (22).

Under Cournot competition, markup elasticities satisfy

Γki − 1

µki
=

ε− 1

ε
− 2

µki
. (A4)

The term (Γki − 1)/µki is increasing in markup µki and hence also in market share ski. Substi-

tuting equation (A4) into (A3), we obtain expression (21).

Under Bertrand competition, markup elasticities Γki are given by

Γki ≡
∂ logµki

∂ log ski
=

[
ε

(
µki − 1

µki

)
− 1

]
(µki − 1) ,

and (Γki − 1)/µki by
Γki − 1

µki
= ε

(
µki − 1

µki

)2

. (A5)

Both Γki and Γki−1
µki

are increasing in markups and market shares. Changes in sectoral markups

under Bertrand competition are

µ̂kt = µkε

Nk∑
i=1

skiαki

[
(ε− ski (ε− σ))−2 −

∑Nk
i′=1 ski′αki′ (ε− ski′ (ε− σ))−2∑Nk

i′=1 ski′αki′

]
V̂kit.

As under Cournot, a positive shock to firm i results in an increase in sectoral markup if and only

if firm i is sufficiently large in its sector.

To compare analytically changes in sectoral markups under constant markups (equation 15)

and variable markups (equation 21), we restrict the extent of ex-ante firm heterogeneity. Specif-

ically, we assume that sector k contains NA
k type A firms and NB

k = Nk − NA
k type B firms, and

in the initial equilibrium, firms within each type have equal demand/productivity composite,
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Vkit. In the initial equilibrium, each firm of type g = A,B has market share sgk, markup µg
k, and

markup elasticity Γg
k. Firms of type A are indexed by i = 1, ..., NA

k and firms of type B are in-

dexed by NA
k + 1, ..., Nk. In this case, equation (A3) under Cournot competition can be written

as

µ̂kt =
2

1 + (ε− 1)Γ̃k

sAk (1− µk

µA
k

) NA
k∑

i=1

V̂kit + sBk

(
1− µk

µB
k

) Nk∑
i=NA

k +1

V̂kit

 , (A6)

where

Γ̃k = NB
k sBk Γ

A
k +NA

k sAk Γ
B
k .

The term in square brackets in equation (A6) corresponds to the change in the sectoral markup

under fixed markups as expressed above. Therefore, given the same firm-level shocks, sectoral

markups change by more (and the variance is higher) under variable markups than under con-

stant markups if and only if the term in front of the square brackets in equation (A6) is higher

than 1, which is the case if (ε− 1)Γ̃k < 1. This condition is violated if σ is sufficiently low and/or

ε sufficiently high.

A.3 Proof of Proposition 2

Define f(s) and g(s) as probability density functions defined over market shares in sector k,

s = sk1, ..., skNk
, given by f(s) = sα(s)∑Nk

i′=1
ski′αki′

and g(s) = sf(s)a with a =
∑Nk

i′=1
ski′αki′∑Nk

i′=1
s2
ki′αki′

> 1 and

α(s) is defined in equation (17). Because the likelihood ratio g(s)/f(s) = sa is increasing in s,

g(.) first-order stochastically dominates f(.). If skiαki is increasing in ski, f(s) is increasing in s.

It then follows that
∑Nk

i=1 [g(ski)− f(ski)] f(ski) > 0, which corresponds to inequality (25). Note

that if skiαki is decreasing in ski, inequality (25) is reversed.□

Under what conditions is skiαki increasing in market shares, as required by Proposition 2? Un-

der Cournot competition,

skiαki =

(
1− 1

ε

)
ski −

(
1
σ − 1

ε

)
s2ki

1− 1
ε + (ε− 2)

(
1
σ − 1

ε

)
ski

,

which is increasing in ski if and only if

2

(
ε− 1

ε

)
ski +

(
1

σ
− 1

ε

)
(ε− 2) s2ki <

σ (ε− 1)2

ε (ε− σ)
. (A7)

Because the left-hand side of this equation is increasing in sik (for sik ≤ 1), this inequality holds

for ski ≤ s̃k, where s̃k is a function of σ and ε. This implies that inequality (25) is satisfied if

all market shares in sector k are less than or equal to ski ≤ s̃k. Note the condition that skiαki

is increasing in ski is sufficient but not necessary for inequality (25) to hold. In particular, in-

equality (25) may hold (so that sectoral markups and prices comove negatively) even if skiαki is

increasing in some range of the distribution of market shares in a sector but decreasing at the
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upper tail of the distribution.

A.4 Changes in sectoral and aggregate output

Substituting (28) and (29) into (30), changes in aggregate output can be expressed in terms of

changes in sectoral markup and price as

Ŷt = (1 + fη)−1
∑
k

sk

[
−
(
f + 1 + (σ − 1)

(
1− µ

µk

))
P̂kt +

skµ

µk
µ̂kt

]
(A8)

In response to sector k shocks only, changes in aggregate output are

Ŷt = (1 + fη)−1 sk

[
−
(
f + 1 + (σ − 1)

(
1− µ

µk

))
P̂kt +

skµ

µk
µ̂kt

]
(A9)

and change in aggregate price by P̂t = skP̂kt.

Changes in sectoral output are given by

Ŷkt = −σP̂kt + σP̂t + Ŷt. (A10)

In response to sector k shocks only, substituting changes in aggregate output and price using

the expressions above, changes in sectoral output are given by equation (26).

The covariance between changes in firm i markup and sector k output, expression (27), is ob-

tained as follows. First, changes in firm-level market shares are, combining (A2), (16), and (18),

ŝkit = αki

[
V̂kit −

∑Nk
i′=1 ski′αki′ V̂ki′t∑Nk

i′=1 ski′αki′

]
. (A11)

Changes in firm-level markups are, combining (A11) and (15),

µ̂kit = Γkiαki

[
V̂kit −

∑Nk
i′=1 ski′αki′ V̂ki′t∑Nk

i′=1 ski′αki′

]
. (A12)

Changes in sectoral output when f → ∞ are, by equations (18) and (26),

Ŷkt = −
[
σ (1− sk) + η−1sk

]
P̂kt =

[
σ (1− sk) + η−1sk

]
ε− 1

∑Nk
i=1 skiαkiV̂kit∑Nk

i=1 skiαki

. (A13)

Calculating Cov
[
Ŷkt, µ̂kit

]
in the presence of shocks to all firms (only those in sector k are rele-

vant), we obtain expression (27).
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A.5 Proof of Proposition 5

Write equation (32) as

Cov
[
Ŷt, µ̂kt

]
= −sk

f + 1 + (σ − 1)
(
1− µ

µk

)
fη + 1

Cov
[
P̂kt, µ̂kt

]
+

skµ

µk

1

fη + 1
Var [µ̂kt] .

Under the conditions of Proposition 3, Cov
[
P̂kt, µ̂kt

]
≤ 0. Moreover, the term sk(σ−1)

(
1− µ

µk

)
is non-negative if µk ≥ µ and otherwise approaches zero if either (i) sk → 0, (ii) f → ∞, or (iii)

σ → 1.

A.6 Volatility and covariance of aggregate markups and output

In this section, we provide expressions for the variance of and covariance between aggregate

markups and aggregate output. We do not impose f → ∞, as we do in the main text. We use

these expressions in Section 6.

The covariance between sector prices and markups, Cov
[
µ̂kt, P̂kt

]
, is given by (24) under vari-

able markups and (23) under constant markups.

The variance of sectoral prices is given by (19). Under constant markups, Γki = 0 and αki = 1.

The variance of the aggregate price, using P̂t =
∑

k skP̂kt, is

Var
[
P̂t

]
=
∑
k

s2kVar
[
P̂kt

]
. (A14)

The variance of sectoral markups, using (A3), is

Var [µ̂kt] = µ2
k

Nk∑
i=1

s2kiα
2
ki

(Γki − 1

µki

)
−

∑Nk
i′=1 ski′αki′

(
Γki′−1
µki′

)
∑Nk

i′=1 ski′αki′

2

σ2
v . (A15)

Using (28), the variance of aggregate markups is

Var [µ̂t] =
∑
k

s2k

[(
µ

µk

)2

Var [µ̂kt] + (1− σ)2
(
1− µ

µk

)2

Var
[
P̂kt

]
+ 2 (1− σ)

µ

µk

(
1− µ

µk

)
Cov

[
µ̂kt, P̂kt

]]
,

(A16)

and the covariance between aggregate price and markup is

Cov
[
P̂t, µ̂t

]
= µ

∑
k

s2k
µk

Cov
[
P̂kt, µ̂kt

]
+ (1− σ)

∑
k

s2k

(
1− µ

µk

)
Var

[
P̂kt

]
. (A17)
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Using (30) and Ẑt = µ̂t − P̂t, the variance of aggregate output is

Var
[
Ŷt

]
=

(
1

1 + ηf

)2

Var [µ̂t] +

(
1 + f

1 + ηf

)2

Var
[
P̂t

]
− 2 (1 + f)

(1 + ηf)2
Cov

[
P̂t, µ̂t

]
, (A18)

and the covariance between aggregate output and markup is

Cov
[
Ŷt, µ̂t

]
=

(
1

1 + ηf

)
Var [µ̂t]−

(
1 + f

1 + ηf

)
Cov

[
P̂t, µ̂t

]
. (A19)

A.7 Decreasing returns to scale

The production function is now given by

Ykit = ZkitL
β
kit. (A20)

where β ≤ 1. Marginal cost is

MCkit = β−1Wt (Ykit)
(1−β)/β (Zkit)

−1/β , (A21)

or, using PkitYkit = skitPktYkt,

MCkit = β−1Wtµ
β−1
kit (PktYktskit)

(1−β) (Zkit)
−1 . (A22)

The firm-level markup, µkit, is defined as the ratio of price to marginal cost, and is related to

expenditure shares by equation (5), which does not depend on β.

Labor payments of firm i in sector k are

LkitWt = βµ−1
kitPkitYkit,

and profits (revenues minus labor payments) are

Πkit =
(
1− βµ−1

kit

)
PkitYkit.

We define the sectoral markup as the ratio of sectoral revenues to labor payments,

µkt ≡
PktYkt
WtLkt

, (A23)

which can be expressed as a function of firm-level markups and expenditure shares,

µ−1
kt = β

Nk∑
i=1

µ−1
kitskit. (A24)
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The 50-50 between/within decomposition of changes in sectoral markups under Cournot com-

petition derived in Appendix A.1 holds irrespectively of the value of β.

The expenditure share of firm i in sector k, using Pkit = µkitMCkit, satisfies

skit =
Vkit

(
µβ
kits

1−β
kit

)1−ε

∑Nk
i′=1 Vki′t

(
µβ
ki′ts

1−β
ki′t

)1−ε . (A25)

Equilibrium firm-level expenditure shares and markups are the solution to equations (5) and

(A25).

Log-linearizing (A25) and using µ̂kit = Γkiŝkit, we obtain the analog to equation (14):

ŝkit = V̂kit + (1− ε) Λkiŝkit −
Nk∑
i′=1

ski′
(
V̂ki′t + (1− ε) Λki′ ŝki′t

)
, (A26)

where Λki = βΓki + 1− β. When β < 1, Γki < Λki if and only if Γki < 1.

We can follow similar steps to obtain expressions for changes in sectoral markups and prices to

firm-level shocks, as well as the implied variances and covariances.

A.8 Markups when firms internalize impact on aggregates

In our baseline model we assume that when a firm chooses quantity, it does not take into ac-

count that its choice impacts aggregate output and the wage. This is a behavioral assumption

since, with a discrete number of sectors and a discrete number of firms by sector, a firm’s choice

does has a non-zero effect on aggregates. Here we solve for markups relaxing this assumption.

The inverse demand for firm i in sector k (omitting time subscripts) is

pi ≡
Pki

P
= Y

− 1
ε

ki (Yk)
1
ε
− 1

σ Y
1
σ .

Differentiating pki with respect to Yki, taking other firms’ quantities as given (but not sectoral or

aggregate output), we obtain

d log pki
d log Yki

= −1

ε
(1− ski)−

1

σ
ski +

1

σ
skski (A27)

where we used
d log Yk
d log Yki

=
PkiYki
PkYk

= ski

and
d log Y

d log Yk
=

PkYk
PY

= sk.

The last term in (A27) is zero if we calculate this derivative taking Y as given. From labor supply
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choice, we can express the real wage as

w ≡ W

P
= f0Y

ηL
1
f

Differentiating w with respect to Yki and using the fact that d log Yki = d logLki (since Yki =

ZkiLki), we obtain
d logw

d log Yki
= ηskski +

1

f
snks

n
ki, (A28)

where snk =
∑

i∈k Lki/L and snki = Lki/Lk.

Firm i chooses output Yki to maximize real profits (i.e. profits relative to the aggregate price in-

dex), Yki ×
[
pki (Yki, Y−ki)− w

Zki
(Yki, Y−ki)

]
, taking output choices by other firms, Y−ki, as given.

We do not take into account the effect that changes in profits have on consumption and leisure

of the firm’s owner (Azar and Vives, 2021). The first order condition is

pki −
w

Zki
+ Yki

(
dpki
dYki

− dw

dYki

1

Zki

)
= 0

which can be re-arranged as

pki =
w

Zki

(
1 + d logw

d log Yki

1 + d log pki
d log Yki

)
.

Substituting the expressions for d log pki
d log Yki

and d logw
d log Yki

, (A27) and (A28), we obtain

Pki =
W

Zki

(
1 + ηskski +

1
f s

n
ks

n
ki

1− 1
ε (1− ski)− 1

σski +
1
σskski

)
(A29)

Since markups now depend on economy-wide sales and employment shares, skski and snks
n
ki,

rather than on the shares within sectors, we must solve for markups in all sectors simultane-

ously rather than sector by sector in our baseline model, which is more intensive computation-

ally.

If sk → 0, then (A29) becomes

Pki =
W

Zki

(
1

1− 1
ε (1− ski)− 1

σski

)
. (A30)

This is the expression for prices in the baseline model, in which we assumed that d logw
d log Yki

=
d log Y
d log Yki

= 0 when firms choose quantity.

Markups in expressions (A29) and (A30) differ for two reasons. First, a unilateral increase in Yki,

raises Y , implying a smaller decline in price pki compared to the case in which individual firms

take Y as given. This implies a higher effective demand elasticity, lowering markups. This effect

is captured by the term 1
σskski in the denominator of (A29).

Second, an increase in Yki raises w. This reduces the profit maximizing quantity compared to

A9



the case in which w is taken as given by individual firms. This effect is smaller the higher is

the Frish elasticity f and the less sensitive is the marginal utility of consumption to aggregate

output. This effect is zero if labor disutility is independent of aggregate labor (e.g. for perfectly

elastic labor supply f = ∞) and if the marginal utility of consumption is independent of aggre-

gate consumption (e.g. for linear utility in consumption η = 0).

Applying (A29) using sales and employment shares in our baseline calibration has a negligible

impact on markup levels compared to those based on (A30) our baseline. For example, across

the two alternatives, the implied level of markups levels for the highest markup firms (where

the effect would be largest) differ only at the third decimal place.

B Additional Information on Data and Estimation

B.1 Descriptive statistics

In Table A1, we report descriptive statistics for the estimation sample used in the estimation of

the production function and for the baseline sample used to compute markups in our empirical

exercise.
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Table A1: Descriptive Statistics

Panel A: Estimation Sample

#obs mean median 25th per. 75th per. 95th per.
Sales (log) 220,733 8.14 7.97 6.98 9.08 11.04
Quantity (log) 220,733 7.53 7.45 6.29 8.76 10.94
Price (log) 220,733 0.61 0.28 -.005 .90 2.95
Wage bill (log) 220,733 6.83 6.67 5.82 7.61 9.41
Capital (log) 220,733 6.92 6.74 5.59 8.08 10.37
Services (log) 220,733 6.72 6.61 5.55 7.73 9.60
Materials (log) 220,733 6.94 6.83 5.62 8.15 10.26

Panel B: Baseline Sample

#obs mean median 25th per. 75th per. 95th per.
Sales (log) 9,383,228 5.85 5.58 4.69 6.77 8.86
Wage bill (log) 9,383,228 4.32 4.32 3.06 5.49 7.21
Capital (log) 9,383,228 4.00 3.84 2.93 4.92 7.09
Services (log) 9,383,228 4.20 3.90 3.01 5.13 7.26
Materials (log) 9,383,228 4.69 4.44 3.40 5.78 8.22

Markup 9,383,228 1.39 1.21 0.82 1.77 3.30
Elast. Materials 9,383,228 0.45 0.40 0.25 0.59 1.02
Sales/Materials 9,383,228 3.63 2.92 2.09 4.35 8.95
Local RTS 9,383,228 0.95 0.96 0.84 1.09 1.26

#obs mean median top 1% top 0.1% top 0.01%
Market Share (pp) 9,383,228 0.07 0.003 0.93 9.12 38.40

NOTE: Panel A (estimation sample) gives statistics for the sample of firms in the EAP survey from 2009 to 2019 with
quantity information. Data is winsorized by 2-digit sectors at 1%. Panel B (baseline sample) gives statistics of for the
sample of firms in FICUS-FARE from 1994 to 2019 as described in the main text. Local Return to Scale (Local RTS) is
defined as the sun of the material, labor, capital and service elasticities. Markup, material elasticity, ratio of sales to
materials and local RTS are winsorized at the 3% level.
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B.2 Production function and markup estimation

In this appendix, we describe the empirical framework we use to estimate production func-

tions and firm-level markups. We also discuss its implementation in the FICUS-FARE French

firm census data. This framework is based on the so-called production approach and builds

on the methodology in De Loecker and Warzynski (2012) and De Loecker et al. (2016, 2020) as

discussed and implemented in De Ridder et al. (2024).

We assume all firms within 2-digit sectors have a common production function, up to a firm-

specific Hicks-neutral TFP. We further assume that this firm-specific TFP Zit follows an AR(1)

process in logs, that is, logZit = ρ logZit−1 + ξit. For simplicity, in what follows, we omit sector

notation. The production function of firm i is

Yit = ZitF (Lit,Kit,Mit, Oit) , (A31)

where Zit denotes TFP, Lit denotes labor, Kit denotes capital, Mit denotes materials, and Oit

denotes services. These inputs are homogenous across firms within sectors and traded in com-

petitive markets. In our estimation of markups, we do not impose that F is constant returns to

scale.

B.2.1 Calculating markups

When minimizing costs, we assume that materials are a variable input that is not subject to

any adjustment cost or any intertemporal decision. Under these assumptions, the first-order-

condition of the firms’ cost-minimization problem for materials Mit can be rewritten as

PM
t = λitZit

∂F

∂M
⇔ µit =

PitYit

PM
t Mit

Zit
∂F
∂M

Yit/Mit
,

where λit =
Pit
µit

; that is output price is equal to the markup over marginal cost. We denote by

θMit =
Zit

∂F
∂M

Yit/Mit
the elasticity of the production function with respect to material inputMit. Markup

is equal to the product of the ratio of sales to materials and the elasticity of the production

function with respect to materials:

µit =
PitYit

PM
t Mit

θMit . (A32)

We calculate the ratio of sales to materials using the FICUS-FARE data (Panel B Table A1) on

sales and input expenditures, and we estimate the production function as discussed in the next

section.
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B.2.2 Production-function estimation

In this section, we sketch the production-function estimation procedure. We implement a two-

stage procedure using a control-function approach, as introduced by Ackerberg et al. (2007,

2015), but adapted to an oligopolistic competition environment following De Ridder et al.

(2024).

We implement the procedure described below at the 2-digit sector level. Given our assumptions

that inputs are homogeneous and that firms are price takers in the input markets, we deflate

input expenditures by sector-level price indices to recover inputs’ quantities.

Below, we denote with small capital letters the logarithm of large capital letters: zit = logZit,

pit = logPit, lit = logLit, kit = logKit, mit = logMit and oit = logOit. We assume that firms, in a

given sector, produce by combining their inputs using a translog production function:

yit = zit +
∑

u∈{l,k,m,o}

βuuit +
∑∑

{u,v}∈{l,k,m,o}

βuvuitvit = zit +X ′
itβ

where, in the last equality, we collect all the terms in the vector of data X ′
it =

(lit, kit,mit, oit, l
2
it, k

2
it,m

2
it, o

2
it, litkit, litmit, litoit, kitmit, kitxit, ,mitxit) and the vector of parame-

ters to be estimated β′ = (βl, βk, βm, βo, βl2 , βk2 , βm2 , βo2 , βlk, βlm, βlo, βkm, βko, βmo). Finally, we

assume that quantity is observed with some measurement error ϵit, that is, observed quantity

ỹit differs from actual quantity yit such that

ỹit = yit + ϵit = X ′
itβ + zit + ϵit.

The estimation consists of two stages. First, we purge the observed quantity from the measure-

ment errors ϵit. Second, we construct a dynamic panel GMM estimator to estimate the vector

of parameters β.

The empirical counterpart of each variable is discussed in Section 3.1 and descriptive statistics

are given in Panel A of Table A1.

First-stage. The first stage of this procedure consists of separating measurement error from

the true quantity using the fact that firms observe their productivity zit when deciding the

amount of inputs. The demand for the variable input, here materials mit, can be expressed as

a function of productivity: mit = m(zit,Ξit), where Ξit is a vector of all variables that determine

mit other than productivity. This function is often called the control function, as introduced by

Olley and Pakes (1996) and later extended in Levinsohn and Petrin (2003) and Ackerberg et al.

(2015). Under the assumption that mit rises monotonically in zit, the demand function can be

inverted, such that zit = m−1(mit,Ξit). Substituting this function in the production function

gives

ỹit = yit + ϵit = X ′
itβ +m−1(mit,Ξit) + ϵit.
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The fitted values of a non-parametric regression of ỹit on the variables in X ′
it, mit and Ξit there-

fore identify ϵit, as long as the variables in Ξit that determine the demand for mit are correctly

specified.

To construct this control function, we use the first-order-condition with respect to the static

input materials in the cost-minimization problem (as in equation A32)

PM
t =

Pit

µit
Zit

∂F

∂M
. (A33)

Using the fact that ∂F
∂M is a function of input usage, ∂F

∂M (Lit,Kit,Mit, Xit), equation (A33) implic-

itly defines Mit as a function of productivity, Zit, conditional on other inputs’ usage Lit,Kit, Xit,

material price, output price pit, and markup. Furthermore, following De Ridder et al. (2024), we

assume the markup is a function of market share, µit = µt(sit), as is the case under the nested

CES demand system in our model, under either Cournot or Bertrand competition. In the data,

this market share is defined as the ratio between firm-level sales and the sum of the sales of all

firms in the same 5-digit NAF sector.

Equipped with this control function, we run a non-parametric regression of ỹit on inputs’ us-

age and their interaction in Xit, market share sit to control for markups, output price pit, and a

time-fixed effect to control for input price.A1 The fitted values of this regression identify mea-

surement errors ϵit and allow recovering quantity yit.

Second-stage. In the second stage, as in Ackerberg et al. (2015), we build a dynamic panel

estimator in the spirit of Blundell and Bond (2000), where identification is achieved through an

instrument. Specifically, we use past values of input usage as instruments for current values.

Following De Ridder et al. (2024), the GMM-based asymptotic estimator we use is defined as:

Definition 1 The GMM estimator is β̂ ∈ R14 and ρ̂ ∈ R such that the moments E
[
Xit−1ξ̂it

]
and

E
[
ẑit−1ξ̂it

]
are equal to zero where ẑit = yit − X ′

itβ̂ = X ′
it(β − β̂) + zit and ξ̂it = ẑit − ρ̂ẑit−1 =

(Xit − ρXit−1)
′(β − β̂) +X ′

it−1(β − β̂)(ρ− ρ̂) + zit−1(ρ− ρ̂) + ξit

In the remainder of this appendix, we follow De Ridder et al. (2024) and discuss the conditions
under which the above estimator admits a solution. To this end, consider the following system
of equations, which defines the estimator and whose unknowns are β̂ and ρ̂: E

[
Xit−1ξ̂it

]
= 0

E
[
ẑit−1ξ̂it

]
= E

[
Xit−1ξ̂it

]′
(β − β̂) + E

[
zit−1ξ̂it

]
= 0

⇐⇒

 E
[
Xit−1ξ̂it

]
= 0

E
[
zit−1ξ̂it

]
= 0

⇐⇒

 E
[
Xit−1X̃

′
it

]
(β − β̂) + E [Xit−1X

′
it−1] (β − β̂)(ρ− ρ̂) + E [Xit−1zit−1] (ρ− ρ̂) = 0

E
[
zit−1X̃

′
it

]
(β − β̂) + E [zit−1X

′
it−1] (β − β̂)(ρ− ρ̂) + E

[
z2it−1

]
(ρ− ρ̂) = 0

,

A1In practice such non-parametric regression is performed by regressing the observed quantity on a third-order
polynomial of the variables.
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where we use E [Xit−1ξit] = 0 and E [zit−1ξit] = 0, and where we denote X̃it = Xit − ρXit−1.
Note that the first line of the above system of equations corresponds to 14 equations, while the
second line is just a scalar equation. We have 14 + 1 equations with unknown (β̂′, ρ̂) ∈ R14+1.
In general, this system of equations has multiple solutions. However, when (β̂′, ρ̂) is not too far
from the true value (β′, ρ), the terms in (β − β̂)(ρ− ρ̂) are of second order. Ignoring these terms
leads to the following reduced system which can be written in matrix form as: E

[
Xit−1X̃

′
it

]
(β − β̂) + E [Xit−1zit−1] (ρ− ρ̂) = 0

E
[
zit−1X̃

′
it

]
(β − β̂) + E

[
z2it−1

]
(ρ− ρ̂) = 0

⇐⇒

 E
[
Xit−1X̃

′
it

]
E [Xit−1zit−1]

E
[
zit−1X̃

′
it

]
E
[
z2it−1

]
( β − β̂

ρ− ρ̂

)
= 0

which admits a unique solution (β̂, ρ̂) = (β, ρ) as long as the (15 × 15) matrix E
[
Xit−1X̃

′
it

]
E [Xit−1zit−1]

E
[
zit−1X̃

′
it

]
E
[
z2it−1

]
,

 is invertible. From here, De Ridder et al. (2024) conclude that the

GMM estimator is locally identified and consistent.

B.3 Comparison with Anderson et al. (2023)

Table 13 in Anderson et al. (2023) compares estimates of output elasticities and markups under

different approaches for a large US and Canadian retailer. They conclude that using quantity or

revenues makes a difference for the level of estimated markups.

Table A2, discussed in Section 5.4, reports a similar analysis in our French data. Specifically, we

consider our baseline quantity-based markups, accounting markups (Lerner index, calculated

using net operating profits), and revenue-based markups, which are similar to the measures in

Anderson et al. (2023).

The top three rows of Table A2 report the median and inter-quartile range (in brackets) for (i)

output (or revenue) elasticities with respect to the flexible input, (ii) markups, and (iii) ratio of

the corresponding markup measure and the baseline quantity-based markup.

The median output elasticity in our data is 0.4 using quantities and 0.36 using revenues. The

estimates in Anderson et al. (2023) are higher (close to 1) because the variable input is defined

to be costs of goods sold, which accounts for a large share of variable cost of retailers. In spite of

the differences in output elasticities, the ratio of median revenue-based markups and quantity-

based markups is very similar (close to 0.85) in our data and in Anderson et al. (2023). Fur-

thermore, the ratio of Lerner-based markup to quantity-based markup is 0.93 in our data and

close to 1 in Anderson et al. (2023) (our Lerner measure is based on net operating profits while

Anderson et al. (2023) uses gross margin).

In Section C we discuss the robustness of our empirical results on markup cyclicality to these

alternative markup measures.

A15



Table A2: Comparison of Flexible-input Elasticities and Markup Estimates

(1) (2) (3)
Quantity Lerner Revenues

Median firm-level estimated flexible-input elasticity 0.40
[0.35] N/A 0.36

[0.18]

Median firm-level markup 1.21
[0.95]

1.10
[0.25]

1.03
[0.33]

Markup relative to quantity-based markup 1
[0]

0.93
[0.54]

0.85
[0.75]

NOTE: Statistics for the sample of firms in FICUS-FARE from 1994 to 2019. The first three rows report median and
interquartile range (in squared bracket) across the 9,383,228 observations. Underlying firm-level data are winsorized
at the 3% level. Column (1) gives estimates for the baseline quantity-based markup. Column (2) gives estimates
for accounting markup (Lerner index) computed from net operating profit margin as described in Appendix C.1.
Column (3) gives estimates for revenues-based markup as described in Appendix C.4.

C Robustness of Empirical Results

In this appendix, we discuss further robustness exercises. We consider the following variations

of our baseline choices: using accounting (Lerner index) markups (Section C.1), restricting the

sample to the period covered by price data (Section C.2), alternative outlier treatment (Sec-

tion C.3), computing markups using revenue data only (Section C.4), estimating production

functions for single product firms (Section C.5), restricting the sample to the estimation sam-

ple (Section C.6), and focusing on manufacturing firms (Section C.7). The empirical results for

these robustness exercises are collected in Table A3. For convenience, column (1) displays the

baseline results.

C.1 Accounting markups (Lerner Index)

Our baseline estimates and several of our robustness checks are based on the production func-

tion approach to recover markups, as described in Section 3.2 and Appendix B.2. In this ro-

bustness exercise, we instead compute markups using the “accounting approach” based on ac-

counting profits.

Specifically, we compute the Lerner index of firm i at time t as Lernerit ≡ PitYit−TCit
PitYit

where

TCit is the total cost measured as the sum of labor, capital, material and service expenditures,

and PitYit is total revenues of the firm i at time t.A2 With constant returns to scale, MCit =

TCit/Yit, and Lernerit =
Pit−

TCit
Yit

Pit
= Pit−MCit

Pit
. We calculate accounting markups as µLerner

it =

(1− Lernerit)
−1 = PitYit

TCit
.

The results of this exercise are collected in the column “Lerner” of Table A3. The results are

A2The expenditure on capital is computed assuming capital return net of depreciation of 4%. Here we abstract
from risk or sector heterogeneity in depreciation rates.
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qualitatively consistent with our baseline results.

C.2 Period 2009-2019

In this robustness exercise, we restrict our sample to the period 2009-2019. Recall that the sub-

sample used to estimate the production function elasticity starts only in 2009, as firm-level

quantities are not available for earlier years. In our baseline, in order to maximize the sam-

ple of markups available for our exercises, we assumed that the estimated production functions

are stable and extend to the earlier period 1994-2009. The results of our empirical exercises

are collected in the column “2009-2019” of Table A3. The results are qualitatively similar to our

baseline specification. However, the coefficient of the regression of firm-level markup on sector

output and the coefficient of the regression of sector markup on sector level concentration are

no longer significant, likely due to the lower number of observations in our sector panel in this

significantly shorter subsample.

C.3 Outlier treatment

In this robustness exercise, we deploy a different outlier treatment relative to our baseline.

Specifically, in our baseline specification we winsorize the firm-level markup distribution at

the 3% level while in column “Winsorize at 1%” we report results for a winsorization at the 1%

level. We also have explored 2% and 5% levels of winsorization. The results are barely affected

by these alternative outlier treatments.

C.4 Revenue-based markups

In this robustness exercise, we run our empirical specification on markups calculated with out-

put elasticities estimated without quantity data. The results for this markup specification are

collected in the column (5) “Revenues” of Table A3. Again, the results are qualitatively similar

to our baseline specification in column (1).

However, the sector-markup on sector-concentration relationship — while retaining the base-

line sign — loses significance while the relation between sector markups and aggregate output

gains significance but with point estimates that are smaller and closer to zero.

C.5 Single-product firms

The EAP database, as described in Section 3.1, gives quantity and revenue information at the

product level which we then aggregate at the firm-level. One concern is our aggregation from

products to firms — in an environment where large firms tend to produce several products. In

this robustness exercise, we restrict the estimation sample to single-product firms in order to
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address this concern. Results are collected in the column “ Single-Product” of Table A3 and are

qualitatively similar to the baseline estimates (with the exception of the coefficient of sector-

level inverse markup on sector concentration, which becomes insignificant) even if the sample

of firms used to estimate the production function drops to only 117,737 observations.

C.6 Estimation sample

In this robustness exercise, we focus on the estimation sample only. Specifically, each regression

and aggregation from firm to sector-level is carried out on the same sample used to estimate the

production function, that is, over only 220,733 observations on the period 2009-2019. Relative

to our first robustness exercise above, note that we now also lose a large number of firms as

the EAP estimation sample is only a representative survey for smaller firms. The results are col-

lected in the column “Estimation Sample” of Table A3. For this exercise, while we do obtain

similar sign patterns across the different regressions, the statistical significance of several coef-

ficients is reduced. This is likely because the sample size is much smaller — both in terms of the

number of periods and number of firms — and does not adequately account for the population

of small firms.

C.7 Manufacturing firms

In this robustness exercise, we focus on the subset of sectors in manufacturing comprising of

2-digit sectors 13, 14, 15 ,16 ,17 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, and 33. Results

are collected in the column “Manufacturing” of Table A3. Results are qualitatively similar, but

since we lose many 5-digit sectors, some of the results lack statistical power, as for instance, the

coefficient of inverse markup on concentration.

D Role of Entry and Exit

Consistently with the model, our baseline empirical specifications treat entrants, exiters and

continuing firms symmetrically. Irrespective of its status, if a firm is present at time t in our

dataset, it is included in all firm-level regressions (in levels) and its contribution to the respec-

tive sectoral aggregate is recorded in the corresponding sectoral variable at time t. The latter

also implies that sectoral growth rates naturally reflect the contribution of entry and exit.A3

In this section, we investigate the role firm entry and exit for our main empirical results.A4 In

particular, we address the concern that our empirical results are driven by the particular markup

A3The only exception to this symmetric treatment of entering, exiting and continuing firms are specifications
involving firm-level regressions in first differences where, to calculate growth rates, we can only include continuing
firms each period.

A4In our data, the share of entrants and exiters in aggregate revenues is roughly 3 percent each on average over
time.
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dynamics of entrants and exiters. To do this, we re-estimate our key empirical specifications ex-

amining the cyclicality of markups — at the firm and sector levels — for a sample of continuing

firms only.A5

Specifically, we re-estimate our firm-level markup regressions in first-differences restricting the

sample such that for each firm we drop the first year observation (the growth rate in the first

year after the firm enters) and the last year observation (the growth rate in the last year before

the firm exits). That is, we drop the first and last observed markup change of a firm. We also re-

estimate our sector-level markup regressions computing first differences (at period t) in sector-

level markup for the set of continuing firms that are present both at time t and t−1. Throughout,

we keep all covariates involving market shares (be it firm-level market shares or sector level

sums of squared market shares) unchanged relative to the baseline sample. This is because the

markup set by firms in the model depends on the whole distribution of firms in a given market

rather than just the continuing firms’ subset. Similarly, we use the same measures of overall

sector output and aggregate value added as in our baseline specification.

Results are collected in column (2) of Table A4. Most results are very similar to our baseline

— both with respect to the signs and sizes of the coefficients — with two exceptions. First,

the coefficient of sectoral markup on sectoral output, while maintaining the predicted sign and

significance, is now larger. Second, the coefficient of sector markup on aggregate output is now

smaller and very close to zero (though, consistently with our discussion, it remains statistically

undistinguishable from zero).

Thus, as in our baseline results for all firms, the markup dynamics of continuing firms reflect the

evolution of their market shares, and the typical continuing firm markup growth rate is “coun-

tercyclical” with respect to its own-sector output growth. Aggregating markups over continuing

firms in a given sector shows that these “continuing-firm” sectoral markups behave much like

overall sectoral markups: they track the evolution of sectoral concentration in very similar fash-

ion, comove positively with sectoral output, and are “acyclical” with respect to aggregate value

added in the economy.

A5We do not consider a balanced sample for our entire 26-year period because this would significantly reduce the
sample size and induce severe survivorship bias.
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Table A4: Role of entry and exit

(1) (9)
Baseline Continuing Firms Sample

Firm-Level Markup and Market Share
First-Diff. −0.268

(0.092)
−0.236
(0.101)

Sector-Level Markup and HHI
First-Diff. −0.374

(0.177)
−0.456
(0.2283)

Firm-Level Markup and Sector Output
∆log Ykt

−0.024
(0.009)

−0.0157
(0.009)

∆log Ykt ∗ skit 0.280
(0.041)

0.267
(0.0502)

Sector-Level Markup and Sector Output
∆log Ykt

0.160
(0.0396)

0.375
(0.0397)

Sector-Level Markup and Aggregate Output
∆log Yt

−0.239
(0.116)

−0.009
(0.161)

NOTE: This table reports empirical estimates for the continuing firms sample, as described in Section D.

E Additional Figures and Tables

E.1 Relation between market share and volatility

Table A5: Market Share and Market Share Volatility

Dependent Variable σgs
i

kit σgs
t

ki

Coefficient (1) (2)

skit -0.536
(0.001)

ski -0.839
(0.026)

Constant 0.274 0.271
(0.000) (0.000)

Observations 9,358,228 833,285

NOTE: σgs
i

kit is, for a firm i in sector k at time t, the standard deviation of the growth rate of market share across firms

in the same market share percentile. σgs
t

ki is the standard deviation of the growth rate of market share of firm i in

sector k across time. Column (1) reports the regression of σgs
i

kit on market share of firm i at time t, skit. Column (2)

reports the regression of σgs
t

ki on average market share of firm i across time, ski.
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E.2 Inspecting the mechanism: alternative specifications

Table A6: Firm Inverse Markup and Market Share: Level

Dependent Variable: µ−1
kit

Coefficient (1) (2) (3) (4) (5) (6)

skit -1.366 -1.382 -1.17 -0.469 -0.508 -0.297
(0.112) (0.113) (0.132) (0.133) (0.137) (0.146)

Year FE N Y N N Y N
Firm FE N N N Y Y Y
Market * Year FE N N Y N N Y

Observations 9,089,750 9,089,750 9,089,750 9,039,476 9,039,476 9,039,476

NOTE: µ−1
kit is the inverse of firm i sector k gross markup in year t, and skit gives the market share of firm i in sector k.

Columns (1)-(4) report empirical estimates for the FICUS-FARE (1995-2016) data. Standard errors (in parentheses)
are clustered at the firm and year level. Inverse markups are winsorized at the 3% level.

Table A7: Market Share and Marginal Cost

Dependent Variable: log skit

Coefficient (1) (2) (3) (4) (5) (6)

logmcit -0.152 -0.153 -0.033 -0.009 -0.009 -0.008
(0.013) (0.013) (0.011) (0.002) (0.002) (0.002)

Year FE N Y N N Y N
Firm FE N N N Y Y Y
Market * Year FE N N Y N N Y

Observations 212,459 212,459 212,459 212,184 212,184 212,184

NOTE: log skit is the (log) firm i sector k market share, and logmcit = log pit − logµkit is the (log) marginal cost
defined as the difference between (log) price and (log) markup of of firm i in sector k at time t. Columns (1)-(4)
report empirical estimates for the estimation sample FARE (2009-2019) data. We drop observations with negative
markup. Standard errors (in parentheses) are clustered at the firm and year level. Variables are winsorized at the 3%
level.
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Table A8: Markup and Marginal Cost

Dependent Variable: logµkit

Coefficient (1) (2) (3) (4) (5) (6)

logmcit -0.169 -0.169 -0.149 -0.093 -0.093 -0.096
(0.007) (0.007) (0.006) (0.007) (0.007) (0.008)

Year FE N Y N N Y N
Firm FE N N N Y Y Y
Market * Year FE N N Y N N Y

Observations 212,459 212,459 212,459 212,184 212,184 212,184

NOTE: logµkit is the (log) firm i sector k gross markup, and logmcit = log pit − logµkit is the (log) marginal cost
defined as the difference between (log) price and (log) markup of of firm i in sector k at time t. Columns (1)-(4)
report empirical estimates for the estimation sample FARE (2009-2019) data. We drop observations with negative
markup. Standard errors (in parentheses) are clustered at the firm and year level. Variables are winsorized at the 3%
level.

Table A9: Sector Inverse Markup and Sector HHI: Level

Dependent Variable: µ−1
kt

Coefficient (1) (2) (3) (4) (5)

HHIkt -1.203 -1.208 -0.266 -0.286 -0.168
(0.219) (0.219) (0.207) (0.206) (0.162)

Year FE N Y N Y N
Sector FE N N Y Y N
Sector (2-digit) * Year FE N N N N Y

Number of Sectors 275 275 275 275 275
Observations 6,875 6,875 6,875 6,875 6,875

NOTE: µ−1
kt is sector k (inverse) markup in year t, HHIkt is the HHI in sector k. Columns (1)-(4) report empirical

estimates for the FICUS-FARE (1995-2016) data, aggregated to the sector level. Standard errors (in parentheses) are
clustered at the sector and year level.
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E.3 Inspecting the mechanism: instrumental variable approach

In this appendix, we provide further evidence on the firm-level mechanism relating marginal

cost, market share, and markups, based on an instrument for the marginal cost. Recall that the

OLS regression in the main text (Table 4) should not be interpreted as causal and reflects a cor-

relation, possibly subject to endogeneity concerns stemming from measurement error. Here we

follow Ganapati et al. (2020) and Lafrogne-Joussier et al. (2023) and pursue an instrumentation

strategy that exploits arguably exogenous energy price-driven changes in firm-level marginal

costs.

Our instrument leverages two sources of industry-level heterogeneity in the exposure to energy

price changes. First, we exploit the fact that there is heterogeneity in the energy-input mix used

by different sectors. This heterogeneous exposure to the cost of particular energy inputs, in

turn, induces industry-specific energy price variation over time, despite the fact that producers

face common, nation-wide prices for each individual energy input. Second, even holding the

energy input mix constant across industries, some industries may still be more exposed to en-

ergy price variation than others simply because they are more energy-intensive, i.e. they have a

larger cost share of (all forms of) energy in intermediate inputs. Our instrument combines both

sources of industry heterogeneity — which we take as an exogenous technological characteris-

tic — with firm-level variation in intermediate input shares, to obtain a firm-level instrument

that predicts marginal costs.

To construct our instrument we rely on energy consumption data in the EACEI survey (Enquête

sur les consommations d’énergie dans l’industrie) provided by INSEE from 2008 onwards. This

is an establishment-level survey providing data on both the quantity and expenditure on energy,

by type of energy, whose purpose is to provide aggregate energy consumption statistics at the

industry and regional levels. We aggregate this data at the 2-digit sector level and combine it

with firm-level data on intermediate input shares in our estimation panel. In particular, we

construct the instrument for firm i at time t as follows:

logmcit
IV ≡

PM
it−1Mit−1

Pit−1Yit−1
× αE

s(i),t−1 × logPE
s(i),t (A34)

where
PM
it−1Mit−1

Pit−1Yit−1
is the ratio of material expenditures to revenues of firm i at time t−1,A6 αE

s(i),t−1

is the ratio of energy expenditure to material expenditure in the 2-digit sector s(i) at time t− 1,

and where PE
s(i),t is the average cost of one unit of energy in the 2-digit sector s(i) at time t. The

latter is defined as the ratio of expenditure on energy, ExpEs,t, and the total consumption of en-

ergy, ConsEs,t, in the sector s at time t that is PE
s,t =

ExpEs,t
ConsEs,t

. Importantly, energy consumption,

ConsEs,t, is the sum of energy consumed in the form of electricity, steam, natural gas, network

gas, coal, lignite, coal coke, petroleum coke, butane-propane, heavy fuel oil, and domestic fuel

A6We also considered a specification in which intermediate input shares are defined over variable costs (no cap-
ital) rather than revenues. First stage statistics are lower (yet above 10 unless we drop all fixed effects, as in our
baseline) and the point estimates are very similar.
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oil, all expressed in Petroleum Equivalent Tons (TEP) units. Finally, we lag both the firm-level

share of intermediate inputs and sector-level energy cost shares in intermediate inputs to ad-

dress endogeneity concerns.

Table A10 of this appendix shows the results of our instrumental variables exercise, where we

use yearly changes in logmcit
IV to instrument for changes in firm-level marginal costs and allow

for year or sector × year fixed effects. When allowing for fixed effects, the first-stage F-statistics

suggest that our instrument is strong. Our second stage results suggest that the qualitative pre-

dictions under OLS are robust to this instrumentation strategy: higher marginal cost growth

driven by (heterogeneous exposure to) energy price growth is associated with lower market

share and markup growth. Point estimates are larger than in our OLS specification.

Table A10: Markups, Market Shares and Marginal Costs: Instrumental Variable Approach

IV-Specification: energy price

(1) (2) (3) (4) (5) (6)

Dependent Variable: ∆ log skit ∆ logµkit

∆ logmcit -0.870 -0.386 -0.274 -1.235 -0.668 -0.951
(0.634) (0.199) (0.038) (0.482) (0.192) (0.110)

Year FE N Y N N Y N
Sector × Year FE N N Y N N Y

Kleibergen-Paap 1st Stage F-Stat 3.963 20.196 57.006 3.963 20.196 57.006

Observations 173,297 173,297 173,239 173,297 173,297 173,239

NOTE: ∆log µkit is the first-difference of (log) gross markup of firm i sector k at time t, ∆log skit is the first-difference
of (log) market share, and ∆logmcit is the first-difference of (log) marginal cost when the latter is defined as the
difference between (log) price and (log) markup of firm i in sector k at time t. Marginal cost is instrumented by
firm-level measures of energy price. Columns (1)-(6) report empirical estimates for the estimation sample FARE
(2009-2019) data. Columns (1) and (4) report pooled estimates while columns (2), (3), (5) and (6) report estimates
that further control for year or sector×year fixed effects. Sector-year fixed effects are defined at the 5-digit NAF sector
classification level. Standard errors (in parentheses) are two-way clustered at the firm and year level. ∆log µkit and
∆logmcit are winsorized at the 3% level.
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E.4 Firm-level evidence

Table A11: Firm Markup and Sector Output

(1) (2) (3) (4)
Data Data Model Model

Dependent variable: log(µkit)

log Ŷkt 0.010 -0.001
(0.014)

log Ŷkt ∗ skit 0.158 0.190
(0.065)

log Ŷ HP
kt -0.022 -0.002

(0.021)

log Ŷ HP
kt ∗ skit 0.413 0.425

(0.114)

Firm FE Y Y Y Y
Year FE Y Y Y Y

Number of Obs. 8,361,273 9,039,476 - -

NOTE: µkit is firm i sector k gross markup in year t, skit gives the market share of firm i in sector k, year t. log Ŷkt

(resp. log Ŷ HP
kt ) is log value-added of sector k at time t detrended following Hamilton (2018) (resp. using a HP-

filter). Columns (1) and (2) report empirical estimates for the FICUS-FARE (1995-2019) data. Standard errors are
two-way clustered at the sector×year level. Columns (3) and (4) report estimates based on model-simulated data.
Log markup are winsorized at the 3% level. Note that the number of observations for the deviation from a Hamilton
(2018) trend is lower, as we lose a few periods due to the filtering.
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Table A12: Firm Market Share and Sector Output

(1) (2) (3) (4) (5) (6)
Data Data Data Model Model Model

(all data) (s̄ki < 0.50) (s̄ki > 0.50) (all data) (s̄ki < 0.50) (s̄ki > 0.50)

Dependent variable: log skit

log Ŷkt -0.486 -0.488 0.143 -1.377 -1.381 0.336
(0.027) (0.027) (0.052)

Firm FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
Number of Obs. 8,361,273 8,360,864 440 - - -

Dependent variable: log skit

log Ŷ HP
kt -0.829 -0.831 0.143 -3.469 -3.477 0.343

(0.046) (0.046) (0.061)

Firm FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
Number of Obs. 9,039,476 9,039,036 440 - - -

NOTE: log skit gives the (log) market share of firm i in sector k, year t. log Ŷkt (resp. log Ŷ HP
kt ) is log value-added of

sector k at time tdetrended following Hamilton (2018) (resp. using a HP-filter). s̄ki is the average market share of firm
i in market k. Column (1-3) reports empirical estimates for the FICUS-FARE (1995-2019) data. Sectors are defined at
the 5-digit NAF sector classification level. Column (4-6) reports estimates based on model-simulated data. Standard
errors in the data are two-way clustered at the sector×year level. First-difference in log market share are winsorized
at the 3% level. Note that the number of observations for the deviation from a Hamilton (2018) trend is lower, as we
lose a few periods due to the filtering.
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E.5 Sector-level evidence

Table A13: Sector Markup and Sector Output

(1) (2) (3) (4)
Data Model

Dependent variable: logµkt logµ̂HP
kt logµkt logµ̂HP

kt

log Ykt 0.116 0.145
(0.042) (0.023)

log Ŷ HP
kt 0.157 0.110

(0.038) (0.040)

Sector FE Y Y Y Y
Year FE Y Y Y Y

Number of Sectors 275 275 275 275
Number of Obs. 6,875 6,875 6,875 6,875

NOTE: Regression of sector-level log level and HP-trend deviation of markup (logµkt, logµ̂HP
kt resp.) on sector log

value-added (log Ykt , log Ŷ HP
kt resp.). Column (1-2) reports empirical estimates for the FICUS-FARE (1995-2019)

data, and standard errors (in parentheses) are clustered at the sector level. Columns (3-4) reports estimates based
on model-simulated data. The point estimate for this column give the median coefficient obtained from running
the reduced-form regression over 5,000 simulated samples, each of the same length (25 years) as the French data.
The standard errors (in parentheses) are computed over the same simulated samples.
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Table A14: Sector Concentration and Sector Output

(1) (2) (3) (4)
Data Data Model Model

Dependent variable: logHHIkt logĤHI
HP

kt logHHIkt logĤHI
HP

kt

log Ykt 0.094 1.258
(0.046) (0.292)

log Ŷ HP
kt 0.330 0.554

(0.064) (0.241)

Sector FE Y Y Y Y
Year FE Y Y Y Y

Number of Sectors 275 275 275 275
Number of Obs. 6,875 6,325 6,875 6,325

NOTE: Regression of sector-level (log markup on sector log value-added in level and HP-trend deviation ( logHHIkt,

log Ykt and logĤHI
HP

kt , log Ŷ HP
kt resp.). Column (1-2) reports empirical estimates for the FICUS-FARE (1995-2019)

data, and standard errors (in parentheses) are clustered at the sector level. Columns (3-4) reports estimates based
on model-simulated data. The point estimate for this column give the median coefficient obtained from running
the reduced-form regression over 5,000 simulated samples, each of the same length (25 years) as the French data.
The standard errors (in parentheses) are computed over the same simulated samples.

Table A15: Sector Markup and Aggregate Output

(1) (2) (3)
Data Model Model

without Aggr. Shocks without Aggr. Shocks with Aggr. Shocks
Dependent variable: logµ̂HP

kt l̂ogµHP
kt logµ̂HP

kt

log Ŷ HP
t -0.259 0.165 0.015

(0.119) (0.108) (0.044)

Share negative coefficients - 0.02 0.20

Sector FE Y Y Y
Number of Sectors 275 275 275
Number of Obs. 6,875 6,875 6,875

NOTE: Regression of sector k’s markup in year t in HP trend deviation logµ̂HP
kt on (log) aggregate real value-added in

year t in HP trend deviation log Ŷ HP
t . Columns (1) report empirical estimates for the FICUS-FARE (1995-2019) data.

Standard errors (in parentheses) are clustered at the sector level. Columns (2) report estimates based on model-

simulated data. Point estimates for this column give the median coefficient obtained from running the reduced-

form regression over 5,000 simulated samples, each of the same length (25 years) as the French data. The stan-

dard errors (in parentheses) are computed over the same samples. Column (3) reports estimates based on model-

simulated data with aggregate TFP shocks. Point estimates and standard deviation for this column is computed as

for columns (2). The volatility of the serially uncorrelated aggregate TFP shocks is calibrated to match the aggregate

volatility of aggregate output measured in deviation from HP trend in France. Regression are weighted by average

sector value-added.
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E.6 Aggregate-level results

Table A16: Aggregate Markup and Aggregate Output

(1) (2) (3)
Data Model Model with Aggr. Shock

σx σx/σY ρ(x, Y ) σx σx/σY ρ(x, Y ) σx σx/σY ρ(x, Y )

log Ŷ HP
t 1.81 1 1 0.54 1 1 1.81 1 1

log µ̂HP
t 0.96 0.53 0.14 0.19 0.36 0.90 0.24 0.13 0.38

NOTE: The table reports standard deviations, σx, relative standard deviations, σx/σY , and time-series correlations,
ρ(x, Y ), for log aggregate output log Ŷ HP

t and log aggregate markup log µ̂HP
t in deviations from their HP trend. Col-

umn (1) reports empirical estimates for the FICUS-FARE (1995-2019) data. Column (2) reports the median over 5,000
independent simulated samples, each of 25 years. Column (3) reports the average over 5,000 simulated samples of
25 years from a model with aggregate TFP shocks. The volatility of the serially uncorrelated aggregate TFP shocks is
calibrated to match the aggregate volatility of aggregate output measured in deviation from HP trend in France.

Panel A: Correlation Panel B: Ratio of standard deviations

Figure A1: Histogram of Correlation and Relative Standard Deviations of Aggregate Markups
and Output in Model-Simulated Data

NOTE: Kernel density of ρ(∆ logµt,∆log Yt), the correlation coefficient between aggregate markups and aggregate
output, and σ(∆ logµt)/σ(∆ log Yt), the ratio of standard deviation of aggregate markups and aggregate output,
on model-simulated data based on 5,000 repetitions of 25 period samples. Vertical redlines show the empirical
estimates.
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F Alternative Calibration Results

In this section, we reproduce the quantitative results for various alternative calibration of the

preference parameters ε. For each calibration, we choose the remaining parameters to match

the same targets of Table 1 as in our baseline calibration with ε = 5.

Table A17: Firm Markup and Sector Output

(1) (2) (3) (4) (5) (6) (7) (8)
(σ = 2.01 and ε = 7) (σ = 1.92 and ε = 6) (σ = 1.80 and ε = 5) (σ = 1.66 and ε = 4)

Dependent variable: log(µkit) ∆log(µkit) log(µkit) ∆log(µkit) log(µkit) ∆log(µkit) log(µkit) ∆log(µkit)

log Ykt -0.001 -0.001 -0.001 -0.001

log Ykt ∗ skit 0.272 0.236 0.265 0.264

∆log Ykt -0.001 -0.001 -0.001 -0.001

∆log Ykt ∗ skit 0.281 0.227 0.247 0.248

Firm FE Y N Y N Y N Y N
Year FE Y N Y N Y N Y N

NOTE: µkit is firm i sector k gross markup in year t, skit gives the market share of firm i in sector k, year t and log Ykt

sector k’s (log) value-added in year t. ∆log(µkit) is the first-difference of (log) gross markup in year t for firm i sector
k , skit gives the market share of firm i in sector k, year t and ∆log Ykt is the first-difference of sector k (log) value-
added in year t. All columns report estimates based on model-simulated data for various choices of elasticities σ
and ε.
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Table A18: Firm Market Share and Sector Output

(1) (2) (3) (4)
(σ = 2.01 and ε = 7) (σ = 1.92 and ε = 6) (σ = 1.8 and ε = 5) (σ = 1.66 and ε = 4)
all small large all small large all small large all small large

Dep. var. log skit

log Ykt -3.404 -3.419 0.583 -2.890 -2.900 0.273 -2.613 -2.621 0.535 -1.977 -1.979 0.146

Firm FE Y Y Y Y Y Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y Y Y Y Y Y

Dep. var. ∆log skit

∆log Ykt -3.404 -3.412 0.355 -2.925 -2.932 0.253 -2.585 -2.591 0.274 -1.952 -1.956 0.283

Firm FE N N N N N N N N N N N N
Year FE N N N N N N N N N N N N

NOTE: skit gives the market share of firm i in sector k, year t, and log Ykt is the deviation of sector k (log) value-
added in year t from its mean. ∆logskit gives the first-difference of (log) market share of firm i in sector k, year t,
and ∆log Ykt is the first-difference of sector k (log) value-added in year t. s̄ki is the average market share of firm i in
market k. All columns report estimates based on model-simulated data for various choices of elasticities σ and ε.

Table A19: Sector Markup and Sector Output

(1) (2) (3) (4) (5) (6) (7) (8)
(σ = 2.01 and ε = 7) (σ = 1.92 and ε = 6) (σ = 1.8 and ε = 5) (σ = 1.66 and ε = 4)

Dependent variable: ∆log µkt log µ̂kt ∆log µkt log µ̂kt ∆log µkt log µ̂kt ∆log µkt log µ̂kt

∆log Ykt 0.091 0.105 0.110 0.103
(0.035) (0.041) (0.040) (0.046)

log Ŷkt 0.096 0.110 0.117 0.120
(0.032) (0.037) (0.035) (0.039)

Sector FE Y Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y Y

Number of Sectors 275 275 275 275 275 275 275 275
Number of Obs. 6,875 6,325 6,875 6,325 6,875 6,325 6,875 6,325

NOTE: Regression of sector-level (log) change (columns 1, 3, 5 and 7), and Hamilton (2018) trend deviation of markup
(columns 2, 4, 6 and 8), (∆logµkt, log µ̂kt resp.) on sector value-added (∆log Ykt, log Ŷkt resp.). All columns report
estimates based on model-simulated data for various choices of elasticities σ and ε. The point estimates for these
column give the median coefficient obtained from running the reduced-form regression over 5,000 simulated sam-
ples, each of the same length (25 years) as the French data. The standard errors (in parentheses) are computed over
the same simulated samples.
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Table A20: Sector Concentration and Sector Output

(1) (2) (3) (4) (5) (6) (7) (8)
(σ = 2.01 and ε = 7) (σ = 1.92 and ε = 6) (σ = 1.8 and ε = 5) (σ = 1.66 and ε = 4)

Dependent variable: ∆ logHHIkt log ĤHIkt ∆ logHHIkt log ĤHIkt ∆ logHHIkt log ĤHIkt ∆ logHHIkt log ĤHIkt

∆ log Ykt 0.431 0.455 0.533 0.548
(0.193) (0.213) (0.235) (0.346)

log Ŷkt 0.530 0.565 0.726 0.737
(0.214) (0.259) (0.288) (0.356)

Sector FE Y Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y Y

Number of Sectors 275 275 275 275 275 275 275 275
Number of Obs. 6,875 6,325 6,875 6,325 6,875 6,325 6,875 6,325

NOTE: Regression of sector-level (log) change (columns 1, 3, 5 and 7), and Hamilton (2018) trend deviation of HHI
(columns 2, 4, 6 and 8), (∆logHHIkt, log ĤHIkt resp.) on sector value-added (∆log Ykt, log Ŷkt resp.). All columns
report estimates based on model-simulated data for various choices of elasticities σ and ε. The point estimates for
these column give the median coefficient obtained from running the reduced-form regression over 5,000 simulated
samples, each of the same length (25 years) as the French data. The standard errors (in parentheses) are computed
over the same simulated samples.

Table A21: Sector Markup and Aggregate Output

(1) (2) (3) (4) (5) (6) (7) (8)
(σ = 2.01 and ε = 7) (σ = 1.92 and ε = 6) (σ = 1.8 and ε = 5) (σ = 1.66 and ε = 4)

Dependent variable: ∆log µkt log µ̂kt ∆log µkt log µ̂kt ∆log µkt log µ̂kt ∆log µkt log µ̂kt

∆log Yt 0.140 0.138 0.165 0.169
(0.104) (0.102) (0.101) (0.095)

log Ŷt 0.144 0.146 0.169 0.171
(0.107) (0.106) (0.119) (0.099)

Sector FE Y Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y Y

Number of Sectors 275 275 275 275 275 275 275 275
Number of Obs. 6,875 6,325 6,875 6,325 6,875 6,325 6,875 6,325

NOTE: Regression of sector k’s markup in year t in first-differences (∆logµkt, in columns 1, 3, 5 and 7) and Hamilton

(2018) trend deviation (log µ̂kt, in columns 2, 4, 6 and 8) on (log) aggregate real value-added in year t in either first-

differences or Hamilton (2018) trend deviation ( ∆log Yt and log Ŷt, resp.). All columns report estimates based on

model-simulated data for various choices of elasticities σ and ε. Point estimates for this column give the median

coefficient obtained from running the reduced-form regression over 5,000 simulated samples, each of the same

length (25 years) as the French data. The standard errors (in parentheses) are computed over the same simulated

samples.
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Table A22: Sector Markup and Aggregate Output with Aggregate Shocks

(1) (2) (3) (4) (5) (6) (7) (8)
(σ = 2.01 and ε = 7) (σ = 1.92 and ε = 6) (σ = 1.8 and ε = 5) (σ = 1.66 and ε = 4)

Dependent variable: ∆log µkt log µ̂kt ∆log µkt log µ̂kt ∆log µkt log µ̂kt ∆log µkt log µ̂kt

∆log Yt 0.005 0.006 0.008 0.012
(0.012) (0.022) (0.042) (0.035)

log Ŷt 0.010 0.010 0.017 0.022
(0.016) (0.027) (0.044) (0.036)

Sector FE Y Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y Y

Number of Sectors 275 275 275 275 275 275 275 275
Number of Obs. 6,875 6,325 6,875 6,325 6,875 6,325 6,875 6,325

NOTE: Regression of sector k’s markup in year t in first-differences (∆logµkt, in columns 1, 3, 5 and 7) and Hamilton

(2018) trend deviation (log µ̂kt, in columns 2, 4, 6 and 8) on (log) aggregate real value-added in year t in either first-

differences or Hamilton (2018) trend deviation (∆log Yt and log Ŷt, resp.). All columns report estimates based on

model-simulated data for various choices of elasticities σ and ε. Point estimates for this column give the median

coefficient obtained from running the reduced-form regression over 5,000 simulated samples, each of the same

length (25 years) with aggregate productivity shocks chosen to match the aggregate volatility of output in the French

data. The standard errors (in parentheses) are computed over the same simulated samples.

Table A23: Aggregate Markup and Aggregate Output

(1) (2) (3) (4)
(σ = 2.01 and ε = 7) (σ = 1.92 and ε = 6) (σ = 1.8 and ε = 5) (σ = 1.66 and ε = 4)

σx σx/σY ρ(x, Y ) σx σx/σY ρ(x, Y ) σx σx/σY ρ(x, Y ) σx σx/σY ρ(x, Y )

log Ŷt 0.71 1 1 0.77 1 1 0.83 1 1 1.04 1 1

log µ̂t 0.25 0.35 0.93 0.30 0.39 0.93 0.30 0.36 0.91 0.36 0.35 0.90

∆log Yt 0.63 1 1 0.64 1 1 0.69 1 1 0.86 1 1

∆log µt 0.21 0.33 0.95 0.24 0.38 0.94 0.25 0.36 0.91 0.30 0.35 0.91

NOTE: The table reports standard deviations, σx, relative standard deviations, σx/σY , and time-series correlations,
ρ(x, Y ), for deviations from trend computed as in Hamilton (2018) of (log) aggregate output log Ŷt and (log) aggregate
markup log µ̂t, and, for log first-difference of aggregate output log∆Yt and aggregate markup log∆µt. Column (1-4)
reports the median over 5,000 simulated samples of 25 years for each alternative calibration.
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Table A24: Aggregate Markup and Aggregate Output with Aggregate Shocks

(1) (2) (3) (4)
(σ = 2.01 and ε = 7) (σ = 1.92 and ε = 6) (σ = 1.8 and ε = 5) (σ = 1.66 and ε = 4)

σx σx/σY ρ(x, Y ) σx σx/σY ρ(x, Y ) σx σx/σY ρ(x, Y ) σx σx/σY ρ(x, Y )

log Ŷt 3.16 1 1 3.16 1 1 3.16 1 1 3.16 1 1

log µ̂t 0.25 0.08 0.25 0.25 0.08 0.22 0.30 0.09 0.29 0.36 0.11 0.35

∆log Yt 3.28 1 1 3.28 1 1 3.28 1 1 3.28 1 1

∆log µt 0.21 0.06 0.21 0.25 0.08 0.22 0.26 0.08 0.27 0.30 0.09 0.29

NOTE: The table reports standard deviations, σx, relative standard deviations, σx/σY , and time-series correlations,
ρ(x, Y ), for deviations from trend computed as in Hamilton (2018) of (log) aggregate output log Ŷt and (log) aggregate
markup log µ̂t, and, for log first-difference of aggregate output ∆log Yt and aggregate markup ∆logµt. Column
(1-4) reports the median over 5,000 simulated samples of 25 years for each alternative calibration with aggregate
productivity shocks chosen to match the aggregate volatility of output in the French data.
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